

An Triantán, Station Road Housing Kildare

Part 8 – Civils Basis of Design Report

Kildare County Council

Job No:	1040805
Doc ref:	ATR CDL XX XX T C 10230
Revision:	P03
Revision date:	20 December 2024

Project title	An Triantán, Station Road Housing Kildare	Job number
Report title	Part 8 – Civils Basis of Design Report	1040805

Document revision history

Revision ref	Issue date	Purpose of issue / description of revision
P01	24 May 2024	First Issue
P02	02 August 2024	Issued for Section 179A Approval
P03	20 December 2024	Issued for Part 8 Approval

Document validation (latest issue)

20/12/2024

Jamie Cullen Х

Principal author

Signed by: Jamie Cullen

T Maren

20/12/2024

Checked by

Signed by: Jonny Phair

20/12/2024

296

Х Verified by

Signed by: g.doyle

© Cundall (Ireland) Limited ("Cundall") owns the copyright in this report and it has been written for the sole and confidential use of Kildare County Council. It must not be reproduced in whole or in part or relied upon by any third party for any use whatsoever without the express written authorisation of Cundall. If any third party whatsoever comes into possession of this report, they rely on it at their own risk and Cundall accepts no duty or responsibility (including in negligence) to any such third party.

Executive Summary

This report outlines the Civil basis of design strategy for the 30-unit housing development located in Kildare Town, Co. Kildare and forms part of the Part 8 application.

The report will detail the existing drainage networks, from available information to date, and provide an outline of the proposed intended drainage strategies for each of the services. It is proposed to provide Sustainable Drainage Systems (SuDS) and Nature-Based Solutions (NBS) wherever possible throughout the design.

The Civil Engineering design, detailed in this report, has been developed based on survey information received to date. Further investigations are scheduled (slit trenches) in order to verify and supplement the CCTV / GPR information for design of the proposed diversions. The proposed development will consist of the following:

The construction of 30 social housing units to include:

- 5no. 3 bedroom two storey duplex apartments;
- 1no. 3 bedroom three storey house;
- 2no. 2 bedroom two storey houses;
- 2no. 2 bedroom single storey apartments;
- 4no. 2 bedroom 3 person single storey apartments;
- 6no. 2 bedroom two storey duplex apartments;
- 10no. 1 bedroom single storey apartments;

The construction of ancillary structures to include:

- ESB substation;
- Switchroom;
- Secure cycle storage rooms;

Associated site works to include:

- Demolition of 2no. existing cottages and associated ancillary structures on Station Road;
- Erection of new boundary treatment to south, east and north boundaries;
- New vehicular and pedestrian entrance from Station Road;
- 26no. vehicle parking spaces
- Of which 6no. provided with EV charging points
- 54 no. residents' bicycle parking spaces
- Of which 4no. suitable for adapted cycles/cargo bikes
- 16no. visitor bicycle parking spaces
- Of which 4no. suitable for adapted cycles/cargo bikes
- New landscaping, internal vehicular and pedestrian shared surface route, public lighting, site drainage works, ancillary site services and development works above and below ground.

Contents

1.0	Introdu	ıction	2				
1.1	Background						
1.2	Existing Site Location						
1.3	Propos	ed Development	3				
1.4	Ground	I Investigations	3				
1.5	Utility S	Survey	4				
1.6	CCTV	Survey	4				
1.7	Flood F	Risk Assessment	4				
2.0	Surfac	e Water Drainage	6				
2.1	Existin	g Surface Water Drainage	6				
2.2	Propos	ed Surface Water Drainage	7				
2.3	Sustair	able Drainage Systems (SuDS)	9				
2.4	Compli	ance with the GDSDS	12				
2.5	Flood E	Exceedance Design	14				
3.0	Wastewater Drainage 16						
3.1	Existin	g Wastewater Drainage	16				
3.2	Design Strategy						
3.3	Propos	ed Wastewater Drainage	17				
4.0	Water	Supply & Distribution	19				
4.1	Existing	g Water Supply Network	19				
4.2	Propos	ed Water Supply Network	19				
Арре	endices		21				
Арре	ndix A	– Topographical Survey	22				
Appe	ndix B	 Site Investigations Report 	23				
Appe	ndix C	– Utility Survey	24				
Appe	ndix D	– CCTV Survey	25				
Appe	ndix E Calcula		26				
Арре	ndix F	– Met Éireann Site Rainfall Data	27				
Appe	endix G	 Surface Water Network Calculation 28 	ons				

Appendix H	 SuDS Maintenance Checklist 	29
Appendix I	 Exceedance Design Calculations 	32
••	– Uisce Éireann Confirmation of ility (CoF)	33

1 Introduction

1.0 Introduction

1.1 Background

Cundall (Ireland) Ltd. have been commissioned by Kildare County Council (KCC) to provide engineering services for a proposed new social housing development located in Kildare Town, Co. Kildare.

This report outlines the Part 8 Basis of Design for Civils-related infrastructure including:

- Surface Water Drainage
- Flood Risk
- Foul Drainage
- Water Supply

1.2 Existing Site Location

The proposed development site is located to the east of Station Road (R415) and the south of Melitta Road (R413), at National Grid Reference (NGR) N 73008 12548 (ITM coordinates X: 672952, Y: 712574).

The existing site is currently a brownfield site with two existing cottages and a shed. A Virgin Media telecommunications mast with associated infrastructure is also on the site. The majority of the site is covered in vegetation and trees including Japanese Knotweed which has been undergoing treatment prior to removal. The site is bounded by existing residential developments along each of the boundaries with the site location and red line boundary indicated in Figure 1-1 below.

Figure 1-1: Site Location (Google Earth)

The site gradient falls from the eastern boundary at a level of approx. +102mAOD in each direction with the lowest point of the site noted at the western boundary, +100.83mAOD, giving a gradient of approx. 1 in 47. Please refer to Appendix A for the topographical survey carried out by Apex Surveys in December 2023.

1.3 Proposed Development

Full details for the proposed development are included in the site description and within the architect's information and reference should be made to this area. The proposed development is displayed in Figure 1-2 below.

Figure 1-2: Proposed Site Layout (Architect Drawing No. 2308-Z-DR-SCA-AR-2000-07)

1.4 Ground Investigations

Ground Investigations (GI) have been provided by IGSL which indicates a very good infiltration rate with the stage 3 results from the two trial pits indicating results of 2.10x10⁻⁴ m/sec and 2.39x10⁻⁴ m/sec. From the four trial pits carried out no groundwater was encountered and the boreholes did not encounter any water strikes with these carried out to a maximum depth of 6.7m below ground level. Please refer to Appendix B for the final GI report.

1.5 Utility Survey

The final Ground Penetrating Radar (GPR) survey information by Murphy's Geospatial has been utilised within this report with regards to the extent that services could be captured within the site and within Station Road.

It was noted that two existing manholes were located to the north-east corner of the site. There are no available records for these networks but it was noted that one of the manholes was overflowing with effluent. Based on this a CCTV survey was commissioned to verify the connections on the existing manholes.

Further details on the individual services captured are provided in their respective sections below. The final GPR survey information is provided within Appendix C of this report.

1.6 CCTV Survey

A CCTV survey was carried out in the existing manholes within the site to verify the routes of the connecting pipes. Due to the level of silt within the pipes the survey was unable to verify the lengths and routes of the pipes. It was noted that the manholes were not connected i.e., surface water and wastewater systems are seperate.

Further details on the individual services captured are provided in their respective sections below. The CCTV survey information, including a sketch of the assumed piped routes, is provided in Appendix D of this report.

On completion of the CCTV survey and due to the limited information available on the pipe routes a GPR survey was commissioned to verify the pipe routes. However, due to the silt buildup within the pipes the survey was limited.

1.7 Flood Risk Assessment

A separate report has been prepared, ATR-CDL-XX-XX-RP-Z-90200, as part of the planning application submission which reviews the potential flood risks to the site from Fluvial, Pluvial, Coastal, and Groundwater flooding.

It has been determined that the site is located sufficiently outside the flood zone risks for Fluvial, Coastal, and Groundwater. However, the site, as indicated through the Kildare Town Local Area Plan (LAP) 2023 – 2029, shows that there is potential for Pluvial flooding to occur as the site is located within the Pluvial Risk Assessment Zone and is noted to be within lands that have had capacity issues in the past with their drainage networks.

To mitigate against the pluvial flood risk the drainage design will account for the 1 in 100-year event, plus 30% climate change and 10% urban creep factors, with suitable attenuation provisions provided on-site. In addition to this, finished floor levels (FFL) throughout the site will be set a minimum of 500mm above the top water level of any attenuation structure with ground levels designed to fall from away from the units to ensure during exceedance events there is no risk to any internal property flooding.

Sustainable Drainage Systems (SuDS) and Nature-Based Solutions (NBS) will also be provided wherever possible throughout the site and will be designed as such to allow runoff to build up within these areas and infiltrate through the ground.

Surface Water Drainage

2.0 Surface Water Drainage

2.1 Existing Surface Water Drainage

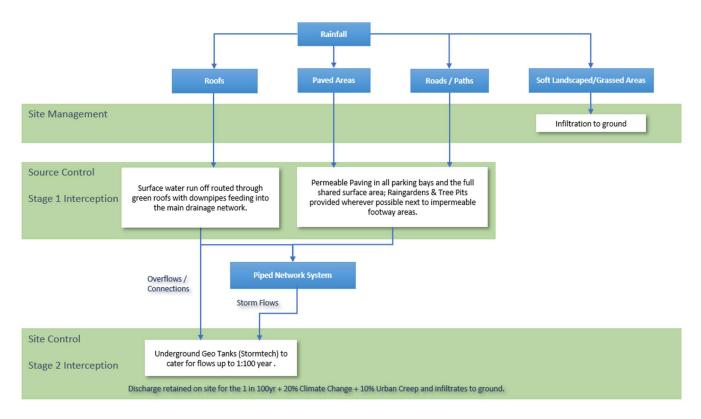
Uisce Éireann (UÉ) record maps received from KCC, refer Figure 2-1 below, do not indicate any existing surface water sewers within or in close proximity to the site. However, there is a network assumed to be within the footway of Station Road with locations of gullies noted in the footway outside the existing cottage.

It was noted from site walks conducted that two existing manholes are within the site boundary, approximate locations of manholes indicated in Figure 2-1 below.

Figure 2-1: UÉ record maps (KCC)

From the GPR survey information received it was noted that there is a surface water network present within the footway immediately outside the existing cottage garage. Two gullies, one located in the footway and the other within the road, discharge into a manhole located here which was traced futher down the pathway, but from this point onwards the pipe could not be traced due to excessive silt build up within the pipe. Additionally, it was noted that the manholes are approximately 450mm below ground level.

A CCTV survey was conducted on site to verify what the two existing manholes located to the north-east corner are serving and if they are in operation. Their initial findings indicate that one of these relates to an existing surface water network that serves the Dara Park residential estate to the south-east of the site. It was noted that there was a defect within this line which occurs at the bend on the pipeline as it changes direction towards Dara Park. The defect does not appear to be preventing the surface water flow through the pipe.


There was also an additional feeder line that appears to come from the back of the properties 1-8 on Station Road into the existing manhole. This line was noted to be partially blocked with the camera unable to pass. The defect does not appear to be preventing the surface water flow through the pipe.

2.2 Proposed Surface Water Drainage

The proposed surface water drainage network will collect surface water runoff and convey it to the main attenuation feature before discharging it via infiltration. As the site has very good infiltration rates and given the limited options to connect to an existing surface water sewer within Station Road an infiltration design is deemed appropriate for the development.

The proposed design intention for the surface water network is provided on drawing ATR-CDL-ZZ-XX-D-C-14001. As the existing sewer within the site is noted to be live, this will be diverted to ensure there is no reduction in the number of units to be provided. This diversion will be kept as tight to the boundaries as possible. Slit trenching is to be carried out to verify the depths where the existing networks enter the site.

Surface water runoff from the site's road network will be captured at source through the proposed porous paving surfacing on the carriageway with impermeable footways discharging to adjacent bio-retention zones, overflows to the main drainage network will also be provided. Porous pavements will collect surface water runoff from parking spaces also. Surface water runoff will also be collected in tree catch pits, which will overflow into the main piped network. Surface water runoff from rooftops will be collected from green roofs and be directed to the proposed surface water pipe network via connections from downpipe locations. Rain gardens will be provided wherver possible in the green areas as a form of attenuation and biodiversity. Refer to Figure 2-2 below for the proposed surface water design strategy.

Figure 2-2: Surface Water Management Design Strategy

It was noted that the provision of swales, filter drains, detention basins/ponds, and rainwater harvesting are not possible for the site given the nature of the site and proposed service separation distances throughout the site. Green living walls were considered but determined to be not suitable for this form of development.

Given the limited water table readings captured from the GI carried out in June 2024 it is assumed that a minimum of 1m of an unsaturated zone between the base on infiltration system and site groundwater levels will be achievable. The

SuDS systems will also be separated sufficiently from services, buildings, and structures to prevent water ingress damage to the services or buildings.

2.2.1 Qbar (Greenfield Runoff)

As part of the initial design it was intended to restrict runoff from the site to the associated Qbar which has been calculated to be 2.0 L/sec. Qbar was calculated using the UKSuDS quick storage estimate tool and the calculation input parameters are as follows:

- Site Area 0.495ha.
- Soil Type 3 Standard Percentage Runoff (SPR) value of 0.37 (conservative estimate with no available GI).
- The Standard Annual Average Rainfall (SAAR) 868mm.

The calculation is based on the Institute of Hydrology equation, as recommended in the Greater Dublin Strategic Drainage Study (GDSDS), which is as follows:

Where:

- Qbar[rural] is the mean catchment annual flow from a rural catchment in m³/s.
- AREA is the area of the catchment in km².
- SAAR is the standard average annual rainfall.
- SOIL is the soil index, with 5 soil types used and SPR values applied to each soil type. The SPR values for the 5 soil types are as follows: Soil 1 = 0.1; Soil 2 = 0.3; Soil 3 = 0.37; Soil 4 = 0.47; Soil 5 = 0.53.

Please refer to Appendix D for the Qbar calculation sheet. This calculation sheet was used at the initial design stages to provide an approximation on the maximum tank size that would be required when assuming the site is fully impermeable in the absence of any existing site information.

2.2.2 Design Criteria

The proposed surface water network will be carried out in accordance with the following guidance documents:

- GDSDS.
- Greater Dublin Regional Code of Practice for Drainage Works.
- The Department of the Environment's Recommendations for Site Development Works for Housing Areas.
- The Department of the Environment's Building Regulations "Technical Guidance Document Part H Drainage and Wastewater Disposal".
- BS EN 752: 2008 Drain and Sewer Systems Outside Buildings.
- IS EN 12056: Part 2 (2000) Gravity Drainage Systems Inside Buildings.
- CIRIA C753 The SuDS Manual.
- CIRIA C768 Guidance on Construction of SuDS.
- CIRIA C698 Site Handbook for the Construction of SuDS.
- Kildare County Development Plan 2023 2029.
- Kildare Local Area Plan (LAP) 2023 2029.
- Kildare Town Surface Water Drainage Study 2022.
- KCC SuDS Guidance Document 2024.

The proposed surface water drainage network has been designed using InfoDrainage modelling software. The following criteria will be applied to the surface water modelling:

- Return Period for Pipework Design:
- 1 year, no flooding

- check 30-year, no flooding.

CUNDALL

 check 100-year, no internal property flooding. Flood routing plan. FFL 500mm freeboard above 100-year flood level where flooding is allowed in designated areas.

•	Allowable outflow:	2.0 L/sec (Discharge to off-site areas)
•	Time of entry:	5 minutes
•	Infiltration Rate:	0.379 m/hr through base and 0.757m/sec through sides
•	Safety Factor:	10.0
•	Pipe Friction (Ks):	0.6 mm
•	Minimum Velocity:	1.0 m/s
•	SAAR:	868mm (Met Eireann 1km2 grid)
•	M5-60:	14.900mm (Met Eireann, refer to Appendix F)
•	Ratio R (M5-60/M5-2D):	0.281 (Met Eireann, refer to Appendix F)
•	Attenuation Storm Return Event:	1 in 100-year + Climate Change & Urban Creep
•	Climate Change Allowance:	30%
•	Runoff from Unit Areas (Roofs):	95%
•	Runoff from Road Areas:	90%
•	Runoff from Parking Areas:	50%
•	Runoff from Contributing Landscaped Areas:	30%
•	Urban Creep Factor:	10%
•	Cv winter:	As per rates above
•	Cv summer:	As per rates above

Note on Cv Factors: The Recommendations for Site Development Works note that the volumetric runoff coefficient Cv should be set at 0.6 for rapidly draining soils and 0.9 for heavy soils. Applying a Cv rate as per the percentage of runoff for each catchment area is deemed appropriate for this site.

The flows will be retained within an attenuation storage chamber on site for the 1 in 100-year storm event, including climate change and urban creep allowances. Based on the results from the Infodrainage model, provided in Appendix G, an attenuation volume of 185m³ would be required to ensure there is no flooding on site. The Stormtech attenuation chamber details are provided on drawing ATR-CDL-ZZ-XX-D-C-16003.

2.3 Sustainable Drainage Systems (SuDS)

In accordance with the GDSDS it is proposed to use SuDS and NBS for managing stormwater for the proposed development. The aim of the SuDS and NBS strategy for the site will be to:

- Attenuate stormwater run-off at source and site control areas.
- Reduce stormwater run-off.
- Reduce pollution impact and improve water quality.
- Replicate the natural characteristics of rainfall-runoff for the site.
- Recharge the groundwater profile.
- Biodiversity and ecology benefits

It is currently proposed to provide bio-retention areas/rain gardens and tree pits wherever possible throughout the site to help achieve a suitable NBS strategy. Green roofs will also be provided above each of the units.

Given the tight site constraints no other NBS strategy were deemed feasible for this development therefore, impermeable areas were reduced as much as possible with porous paving and soft landscaping provided wherever possible.

Outlined below are the proposed SuDS features that could be utilised within the development to intercept and/or treat and store surface water prior to connection to the existing drainage network.

2.3.1 Porous Paving

Porous paving is suitable for pedestrian and/or vehicle traffic, while allowing rainfall to pass through the surface and into the underlying structural layers. Stormwater that infiltrates through the permeable paving, is stored before being discharged into the existing drainage network. Temporarily storing the stormwater in the structural layers slows the rainfall reaching the drainage network and reduces the risk of overloading the system.

Permeable paving is currently proposed to the parking bays and shared surface carriageway which will provide sufficient attenuation and treatment. Refer to Figure 2-3 for a typical example of porous paving systems with partial infiltration considered possible.

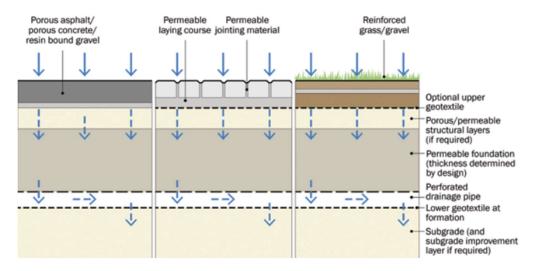


Figure 2-3: Typical Porous Paving Systems - Type B Partial Infiltration (CIRIA SuDS Manual C753)

2.3.2 Bio-Retention

Bio-retention systems are shallow landscaped depressions that can reduce runoff rates and volumes and treat pollution using engineered soils and vegetation. They also provide the benefit of providing attractive landscape features that are self-irrigating and fertilising and increase the habitat and biodiversity for the area.

It is currently proposed to provide bio-retention areas wherever possible within the soft landscaped areas of the site to drain adjacent impermeable areas. A typical section detail of the components of a bio-retention system is provided below in Figure 2-4.

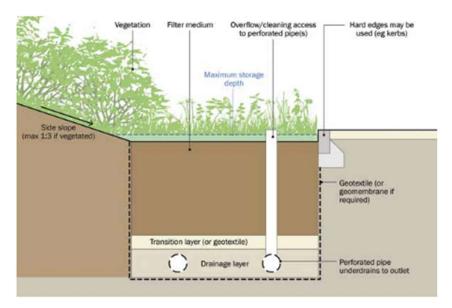


Figure 2-4: Components of a Bio-Retention System (CIRIA SuDS Manual C753)

2.3.3 Tree Pits

Trees can be planted within other SuDS components, such as bio-retention systems and swales, to improve their performance or they can be provided as standalone features within soil-filled tree pits, tree planters or structural soils.

Tree pits can be designed to collect and attenuate runoff by providing storage within an underlying structure. The soils around the trees can also provide treatment of runoff by filtering out the pollutants from runoff directed towards the features. Tree pits are proposed wherever possible on the site and will be surrounded with a root protection barrier to ensure sufficient protection is provided to the roots and other services. A typical section detailing the surface water runoff for trees is provided in Figure 2-5 below.

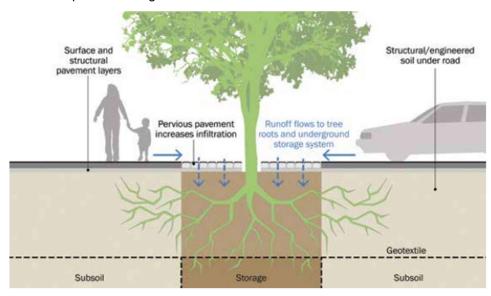


Figure 2-5: Typical Tree Pit Detail (CIRIA SuDS Manual C753)

2.3.4 Stormtech Attenuation Tank

It is proposed that a Stormtech attenuation chamber will be provided for the infiltration tank design. This type of storage system is proposed as the arched chambers are surrounded by stone, to the manufacturers specification. The sediments are captured within this stone providing interception and/or treatment by removing silts and some hydrocarbons from the runoff. Catch pit manholes, with sumps min. 500mm deep, will also provide further silt removing

treatment measure in both the upstream and downstream manholes of the attenuation tank. A typical cross section detail through a MC-3500 Stormtech tank is provided in Figure 2-6 below.

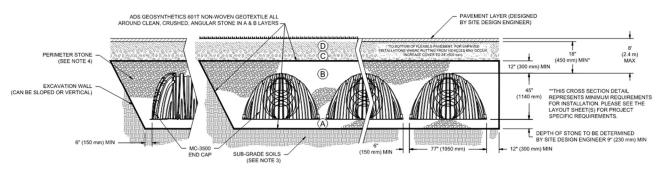


Figure 2-6: Typical Cross Section Detail through MC-3500 Tank

2.3.5 SuDS Maintenance Inspection Checklist

The typical operation and maintenance requirements for the proposed SuDS features discussed above are provided in Appendix H, this is sourced from the CIRIA SuDS Manual C753.

2.4 Compliance with the GDSDS

The GDSDS outlines regional drainage policies to address the drainage needs of the Greater Dublin Area but have also been adopted by many local authorities' drainage policies. These policies address surface water management from the development site from the point of view of water quality, quantity, risk of flooding and compliance with relevant legislation.

As per the GDSDS, proposed developments must be drained on separate foul and surface water systems and must incorporate SuDS for the management of surface water. To ensure compliance with Table 6.3 of the GDSDS, Table 2-1 provides a breakdown of how the surface water network will be designed.

Criteria	Sub criterion	Return Period (Years)	Design Objective	Design Proposals (include our proposals that are site specific)
Criterion 1 River water quality protection	1.1	<1	Interception storage of at least 5mm, and preferably 10mm, of rainfall where runoff to the receiving water can be prevented.	Interception storage will be provided on site via a fully infiltration design for the 1 in 100yr event + 30% Climate Change and 10% Urban Creep.
	1.2	<1	Where initial runoff from at least 5mm of rainfall cannot be intercepted, treatment of runoff (treatment volume) is required. Retention pond (if used) to have minimum pool volume equivalent to 15mm rainfall.	Treatment volume is not required as interception storage will be provided on site.
Criterion 2 River regime protection	2.1	1	Discharge rate equal to 1 year greenfield site peak runoff rate or 2l/s/ha, whichever is greater. Site critical duration storm to be used to assess attenuation storage volume.	Sufficient attenuation storage is provided for the critical storm event with only surcharging of the network noted from network design calculations carried out, refer to Appendix G. It is also noted that the depth of the Top Water Levels (TWL) within the junctions are in the range of 0.9m to 1m below the cover level during the critical event.

Table 2-1: Compliance with the GDSDS Table 6.3

	2.2	100	Discharge rate equal to 1 in 100 year greenfield site peak runoff rate. Site critical duration storm to be used to assess attenuation storage volume	No discharge from the site for the critical storm event with sufficient storage provided within Stormtech attenuation chambers to allow the flows to infiltrate to ground.
Criterion 3 Level of service (flooding) for the site	3.1	30	No flooding on site except where specifically planned flooding is approved. Summer Design storm of 15 or 30 minutes are normally critical.	Analysis has been carried out assuming a 50% reduction in the infiltration rate from the attenuation storage. To ensure no flooding on site it is proposed to fit an overflow connection set 264mm above the Top Water Level (TWL) noted from the critical storm event in Appendix G.
				Any flows which enter this overflow are restricted to 2.0L/sec via a hydrobrake flow control device in a downstream manhole from the connection. This is to ensure downstream areas are not negatively impacted upon during exceedance events with a controlled rate used.
				The proposal has been modelled to ensure it works sufficiently during such events with the results provided in Appendix I. It should be noted that from the calculations carried out it is only during the 1 in 100yr +30% Climate Change & 10% Urban Creep when flows enter this overflow. There are no flows through this pipe during the 1yr or 30yr events. The proposed flood exceedance design is provided
				on drawing ATR-CDL-ZZ-XX-D-C-14001.
	3.2	100	No internal property flooding. Planned flood routing and temporary flood storage accommodated on site for short high intensity storms. Site critical duration events.	Site levels have been designed to ensure that if ponding was to occur it will be situated away from building access points, bin stores, substations, and switch rooms. Please refer to drawing ATR-CDL-ZZ-XX-D-C-62001 for the proposed levels design.
	3.3	100	No internal property flooding. Floor levels at least 500mm above maximum river level and adjacent on-site storage retention.	The on-site attenuation structure has a TWL of 100.331m for the critical storm event which is 819mm lower than the lowest FFL of 101.150m for the unit at station road.
	3.4	100	No flooding of adjacent urban areas. Overland flooding managed within the development.	Levels have been designed to ensure that any flooding will be directed towards designated low points within the landscaped areas. Given the very good infiltration rates on site this will slowly infiltrate back to ground ensuring that no flooding of adjacent urban areas will occur.
Criterion 4 River flood protection	4.1	100	"Long-term" floodwater accommodated on site for development runoff volume which is in excess of the greenfield runoff volume.	This sub-criterion will not be applied within the design as only one of the three sub-criterion are required.
(Criterion 4.1, or 4.2 or 4.3 to be applied)			Temporary flood storage drained by infiltration on a designated flooding area brought into operation by extreme events only.	

		100 year, 6 hour duration storm to be used for assessment of the additional volume of runoff.	
4.2	100	Infiltration storage provided equal in volume to "long term" storage. Usually designed to operate for all events.	The surface water network has been modelled with discharge to be via infiltration only. The infiltration rate has been applied to the model via a filtration outfall method with a factor of safety of 10 applied.
		100year, 6 hour duration storm to be used for assessment of the additional volume of runoff	A further conservative estimate was placed on the tank design with the infiltration rate assumed to be reduced by 50% through the base with a full rate through the sides of the attenuation structure. This was applied due to any unforeseen changes that may occur to the infiltration rate during the construction activities.
			The results from the model are provided within Appendix G where it is noted that there is sufficient storage for the critical storm event + 30% Climate Change & 10% Urban Creep.
			Further assessment was carried out for the exceedance design where the infiltration rates were reduced by 50% to see what impact this has on the network. To prevent flooding an overflow connection will be provided on the tank and flows will be restricted to 2.0L/sec via a hydrobrake. It should be noted that this overflow will only be used during the 1 in 100yr critical event with no flows evident during the 1yr or 30yr events.
4.3	100	Maximum discharge rate of QBAR or 2 l/s/ha, whichever is greater, for all attenuation storage where separate "long term" storage cannot be provided.	This sub-criterion will not be applied within the design as only one of the three sub-criterion are required.

2.4.1 Interception & Treatment Volumes

Criterion 1.1 requires interception storage to be incorporated into surface water drainage design to limit discharge of sediment and pollutants into the downstream surface water drainage network and receiving water courses.

This interception storage is designed to capture surface water run-off from rainfall depths of 5mm (and up to 10mm if possible). Where interception storage is not possible treatment volume is to be provided for 15mm of rainfall, in accordance with Criterion 1.2.

Given the proposed design intention is for infiltration interception storage is provided as all flows up to and including the 1 in 100yr event + 30% Climate Change & 10% Urban Creep will be retained on site and discharge to ground.

2.5 Flood Exceedance Design

As detailed in Table 2-1 above analysis was carried out to verify the flood exceedance design by assuming the infiltration rates from the tanks were reduced by 50%. From the analysis carried out, refer to Appendix I, the tank provides sufficient storage up to the 1 in 30yr critical event. To prevent flooding on site it is proposed to provide an overflow connection set 264mm above the TWL of stormtech chambers for the 1 in 100yr critical storm event site model, Appendix G.

Flows from this overflow are restricted to 2 L/sec via a hydrobrake flow control device to ensure no downstream areas are negatively impacted upon. The proposed flood exceedance design is provided on drawing ATR-CDL-ZZ-XX-D-C-14001.

Wastewater Drainage

3.0 Wastewater Drainage

3.1 Existing Wastewater Drainage

UÉ record maps received from KCC, refer Figure 3-1 below, indicates an existing 150mm dia. wastewater sewer of unknown material within Station Road.

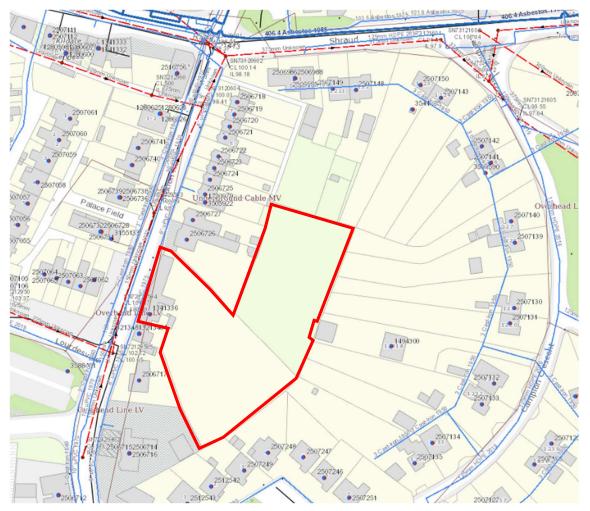


Figure 3-1: UÉ Record Map (KCC)

From the GPR survey information received to date it is noted that there is an existing wastewater sewer within Station Road with manhole depths ranging from 0.8m to 1.4m along the 150mm dia. vitirified clay pipe run.

CCTV survey was conducted on the two existing manholes on the site with one appearing to be a wastewater sewer line running from Dara Park residential estate and continues into 1223 Campion Crescent. The status of this line could not be fully confirmed as gravel and limescale was present in the pipe with the camera unable to fully survey the pipe.

As the line is partially blocked within the site and it was noted by the CCTV surveyors that from local knowledge that the line may be blocked up within Campion Crescent that this line may be redundant. However, this manhole has been noted to flood and vary in levels during the year and may require a diversion.

3.2 Design Strategy

The wastewater drainage network for the proposed development will be designed in accordance with the following guidance documents:

- UE Code of Practice for Wastewater and Water Infrastructure
- Department of the Environment's Recommendations for Site Development Works for Housing Areas
- Department of the Environment's Building Regulations "Technical Guidance Document Part H Drainage and Waste Water Disposal"
- BS EN 752: 2008 Drain and Sewer Systems Outside Buildings
- IS EN 12056: Part 2 (2000) Gravity Drainage Systems Inside Buildings

3.3 Proposed Wastewater Drainage

The proposed foul drainage network for the site will comprise a series of 150mm and 225mm pipes where applicable. Each residential unit is to be serviced by individual 100mm diameter connections.

The estimated wastewater discharge from the proposed development was calculated following the UÉ Code of Practice for Wastewater Infrastructure with an average daily discharge of 0.15 L/sec and a peak flow of 0.93 L/sec.

A Confirmation of Feasibility, CoF, (CDS23008235, refer to Appendix J) was received, and it was noted that the foul sewer connection is feasible once approximately 90m of the existing 150mm gravity sewer in Station Road is upgraded to a 225mm pipe.

An updated Pre-Connection Enquiry has been submitted to UÉ in October 2024 to verify the above CoF is still relevant. A response is outstanding as per the date of this report.

While the existing foul sewer appears to be redundant the presence of foul material is evident from site walks conducted which would indicate some form of loading is being entered into the network. With the levels of this network to be verified and the shallow network within Station Road it is proposed to divert this network within the site as indicated on drawing ATR-CDL-ZZ-XX-D-C-14011.

As it is not clear whether this existing pipe is live further investigation is proposed where a flow measuring will be placed within the existing manhole in Dara Park and left over an agreed period of time. This will verify whether the diversion of the existing wastewater sewer.

The proposed connection point for the site is shown in Figure 3-2 below with the approximate section of sewer to be upgraded outlined in red. The level of this wastewater connection may impact on the proposed levels design as to ensure the connection discharges via gravity levels with the development may have to increase.

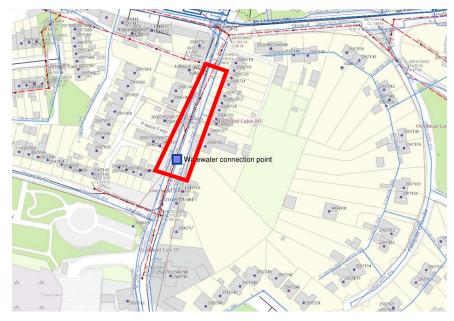


Figure 3-2: Proposed Connection Point and Upgrade Works

40 Water Supply & Distribution

4.0 Water Supply & Distribution

4.1 Existing Water Supply Network

UÉ record maps received from KCC, refer Figure 4-1 below, indicates two watermain pipes within Station Road, one 3" (75mm) dia. cast-iron pipe and the other a 6" (150mm) dia. uPVC pipe.

This was verified via the GPR survey with three existing pipe networks picked up, however it is noted on the preliminary survey that one pipe is 10" (250mm) dia. uPVC located within the main Station Road and the other is a possible 10" dia. uPVC located in the footway outside the development site.

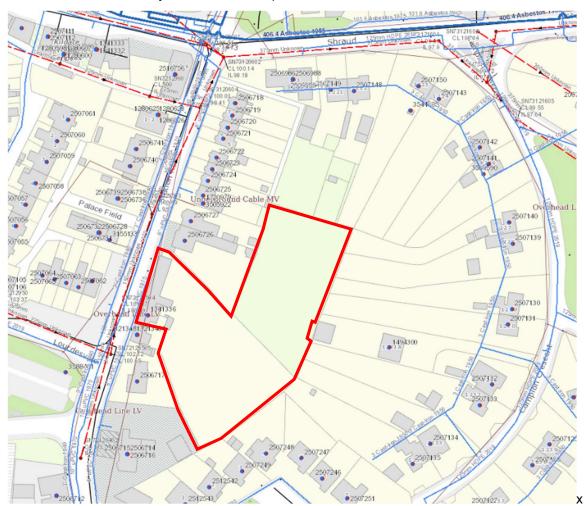


Figure 4-1: UÉ Record Map (KCC)

4.2 Proposed Water Supply Network

The proposed water drainage network will consist of a 100mm diameter looped water main, generally along the site's pathways. The proposed water main layout and connections to existing public water mains will be designed in accordance with UÉ Code of Practice for Water Infrastructure and Standard Details.

Sluice Valves will be arranged in accordance with STD-W-02. Individual houses will be provided with 25mm service connections via meter/boundary boxes from the distribution water mains. Individual connections will be installed in accordance with STD-W-03.

The proposed water main layout will be arranged such that all buildings are within a maximum distance of 46.0m from a hydrant in accordance with the Department of the Environment's Building Regulations "Technical Guidance Document

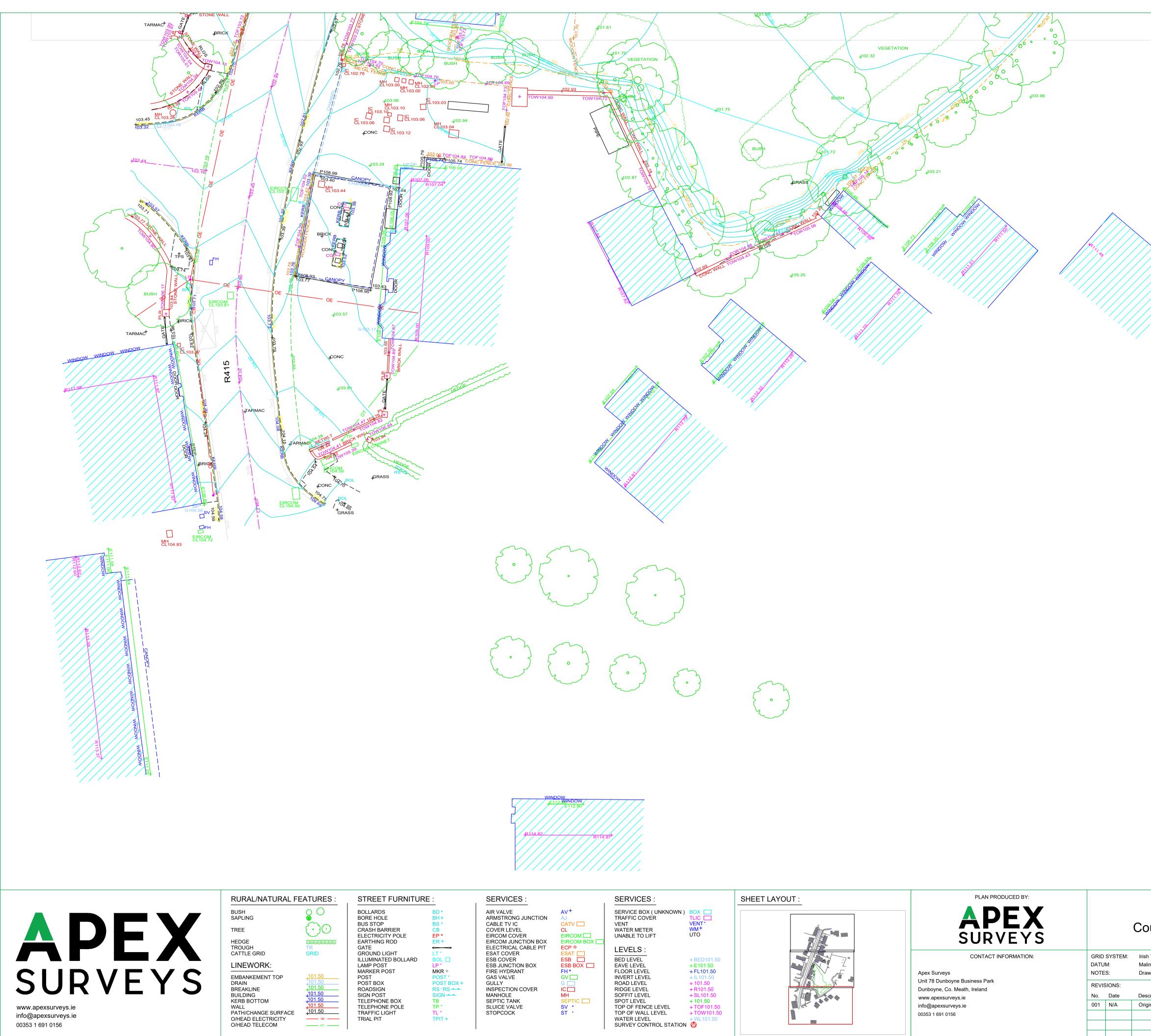
Part B Fire Safety" and UÉ standards. Hydrants shall comply with the requirements of BS 750: 2023 and shall be installed in accordance with UÉ Code of Practice and Standard Details.

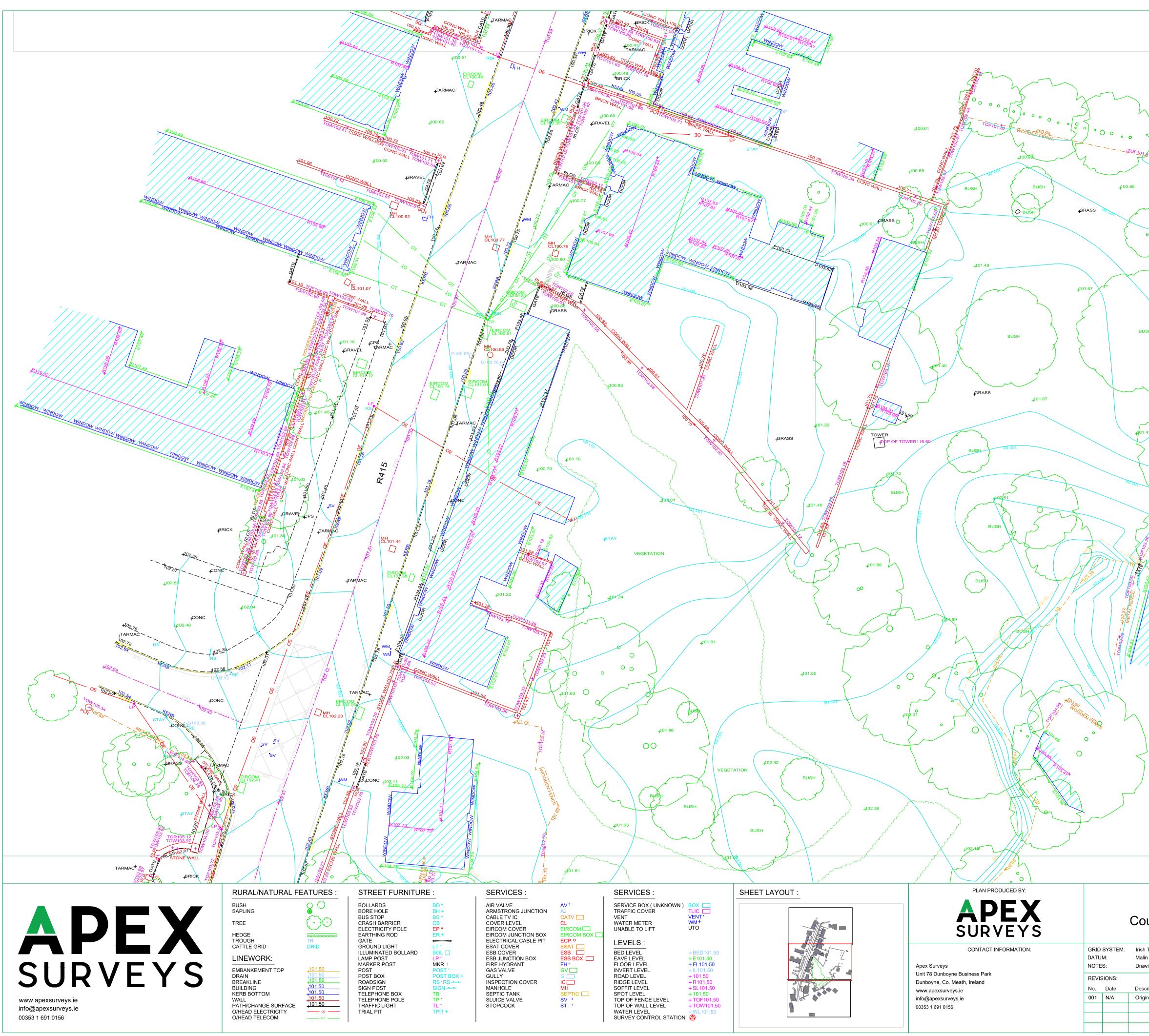
Individual houses will provide water storage in header tanks and include provision of water conservation measures such as dual flush water cisterns and low flow taps.

The estimated wastewater discharge from the proposed development was calculated following the UÉ Code of Practice for Water Infrastructure with an average daily domestic demand of 0.14 L/sec, average day/peak week demand of 0.18 L/sec, and a peak hour water demand of 0.88 L/sec.

As per the CoF (CDS23008235, refer to Appendix J) it was determined that the water connection is feasible without any infrastructure upgrade work. It is proposed to provide the connection for the site off the existing 6" (150mm) water main running along Station Road outside the proposed housing development, refer to Figure 4-2 below.

Figure 4-2: Proposed Connection Point Watermain

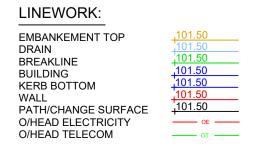

An updated Pre-Connection Enquiry has been submitted to UÉ in October 2024 to verify the above CoF is still relevant. A response is outstanding as per the date of this report.


Appendices

Appendix A – Topographical Survey

Kildare Sunty Council			ad, Kildare
h Transverse Mercator Ilin Head (OSGM15) awing Contains Scale Factor	SCALE :	1/200 A1	DATE : 16/12/2023
scription ginal Drawing	DRG No:	6075	DESCRIPTION : 2D Topographical SURVEYED BY : C.F.
	SHEET:	1 of 3	PROCESSED BY : F.S. CHECKED BY : A.B.

	BUSH BUSH C D D D D D D D D D D D D D D D D D D		
		PRO	JECT:
Kildare ounty Council		Station Ro	ad, Kildare
h Transverse Mercator lin Head (OSGM15) awing Contains Scale Factor	SCALE :	1/200 A1	DATE : 16/12/2023
scription ginal Drawing	DRG No:	6075	DESCRIPTION : 2D Topographical SURVEYED BY : C.F.
	SHEET:	2 of 3	PROCESSED BY : F.S.
			CHECKED BY : A.B.



info@apexsurveys.ie 00353 1 691 0156

RURAL/NATUR	RAL FEATURES
BUSH	00

LINEWORK:

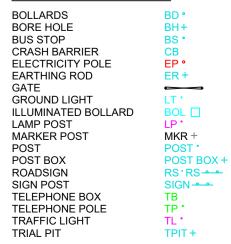
 \odot \odot

GRID

STREET FURNITURE

BH+

ER+

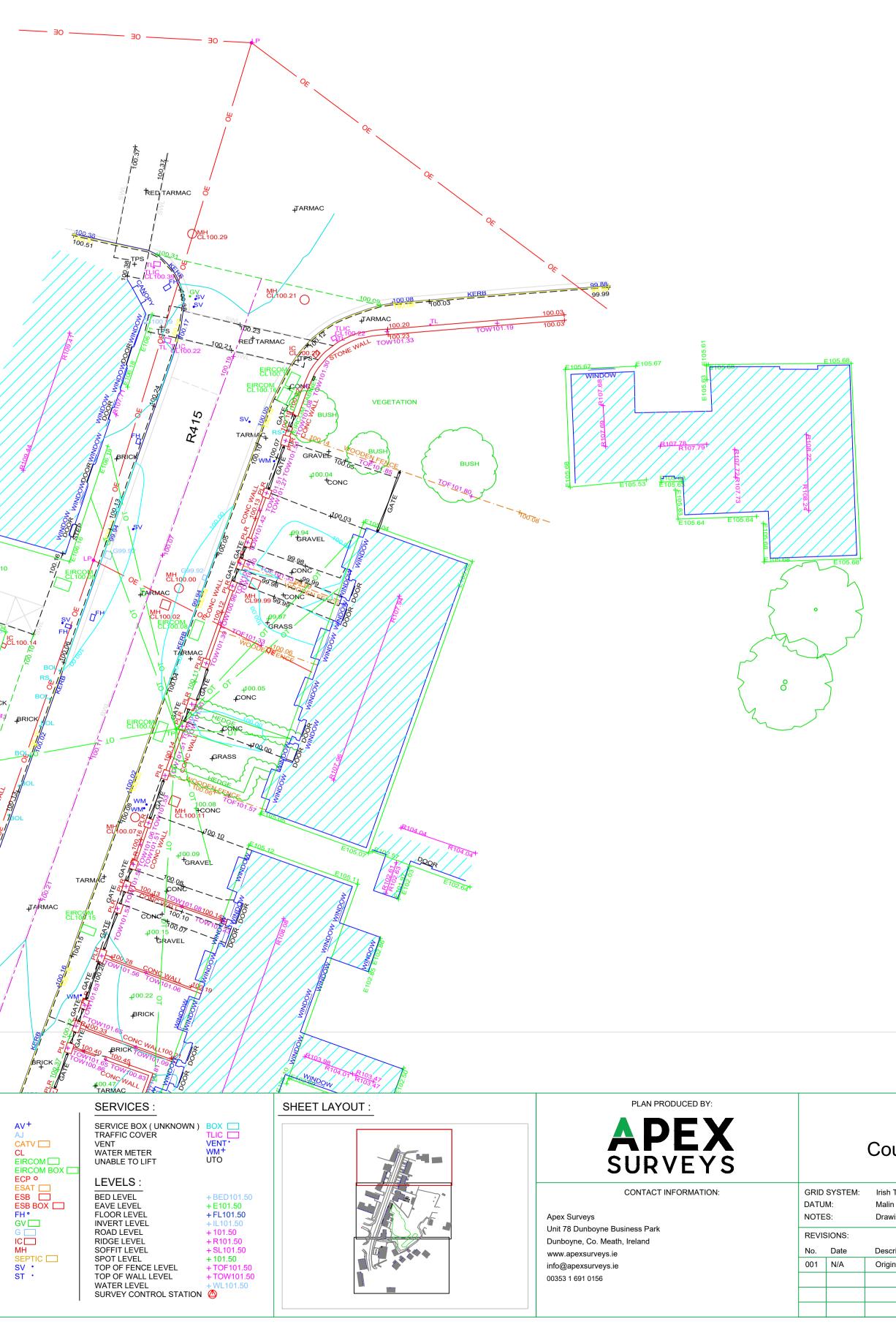

MKR +

POST *

TPIT +

BOL 🗌

BS '



SERVICES :

BRICK

BRICK

		3	
<u>R10470</u> 		14.66 ¹ 02.60 ¹	
CLIENT: Kildare Sunty Council	PROJECT: Station Road, Kildare		
h Transverse Mercator lin Head (OSGM15)	SCALE :	1/200 A1	DATE : 16/12/2023
awing Contains Scale Factor	DRG No:	6075	DESCRIPTION : 2D Topographical
ginal Drawing			SURVEYED BY : C.F. PROCESSED BY : F.S.
	SHEET:	S OT 3	CHECKED BY : A.B.

Appendix B – Site Investigations Report

IGSL Ltd

An Triantán, Station Road Housing

Ground Investigation & Geotechnical Report

Project No. 25468

September 2024

M7 Business Park Naas Co. Kildare Ireland

T: +353 (45) 846176 E: info@igsl.ie W: www.igsl.ie

Distribution	Report Status	Revision	Date of Issue	Prepared By:	Approved By:
Cundall	PDF by email	0	11-09-2024	J. Lawler BSc MSc PGeo EurGeol FGS	P. Quigley BEng CEng MICE MIEI FGS RoGEP Adviser

DOCUMENT ISSUE REGISTER

TABLE OF CONTENTS

Foreword

1. Introduction

2. Fieldworks

- 2.1 General
 2.2 Trial Pits
 2.3 Cable Percussion Boreholes
 2.4 Soakaway Tests (to BRE 365)
 2.5 Plate Bearing Tests
 2.6 Groundwater Monitoring
 2.7 Surveying of Exploratory Hole Locations
- 3. Laboratory Testing
- 4. Desk Study
 - **4.1** Online Historical Drawings **4.2** GSI Database Information
- 5. Ground Conditions & Groundwater
 - 5.1 Ground Profile Superficial Deposits
 - 5.2 Bedrock
 - 5.3 Groundwater
- 6. Ground Assessment & Engineering Recommendations
 - 6.1 General
 - 6.2 Bearing Capacity & Foundations
 - 6.3 Ground Bearing Slab
 - 6.4 Groundwater / Infiltration
 - 6.5 Slopes / Batters
 - 6.6 Pavement Construction
 - 6.7 Buried Concrete
 - 6.8 Waste Acceptance Criteria [WAC] & Environmental Testing Soils destined for Landfill

References

FIGURES

Figure 1	- Site Location Plan
Figure 2	- Part of Map 4 Ordnance Survey Index to the Map of the Town of Kildare
	showing housing terrace & 'Forge'.
Figure 3	- OSI 6" and 25" scale drawings dated 1829-41 and 1897-1913. Aerial image
	dated 2013-18.
Figure 4	 Quaternary Soils Map for the Kildare Town Site
Figure 5	 Bedrock Geological Map for the Kildare Town Site
Figure 6	- SPT Plot versus Depth for Cable Percussion boreholes
Figure 7A-7F	- Soil profiles in pits TP01, TP03 & TP04

TABLES

Table 1	- Water measurements in on-site exploratory holes
Table 2	- Measured infiltration rates (f) expressed as exposed area (metre) per unit time (minute)
Table 3	- Equivalent CBR % Values obtained in Plate Bearing Testing
Table 4	- Elevated values (WAC Testing)

APPENDICES

Appendix 1 Appendix 2	- Trial Pit Logs & Photographs - Cable Percussion Borehole Logs / SPT Er Calibration Certificate
Appendix 3	- Soakaway Test Records
Appendix 4	- Plate Bearing Test Records
Appendix 5	- Groundwater Monitoring
Appendix 6	 Geotechnical Laboratory Results (Soil)
Appendix 7	- Chemical & Environmental Test Records (Soil)
Appendix 8	- Exploratory Hole Location Plan
Appendix 9	- Stratigraphic Cross Sections

FOREWORD

The following conditions and notes on the geotechnical site investigation procedures should be read in conjunction with this report.

Standards

The ground investigation works for this project (**An Triantán, Station Road Housing**) have been carried out by IGSL in accordance with Eurocode 7 - Part 2: Ground Investigation & Testing (EN 1997-2:2007). This has been used together with complementary documents such as Engineers Ireland Specification for Ground Investigation (2nd Ed, 2016), BS 5930 (2015+A1:2020) and BS 1377 (Parts 1 to 9) and the following European Norms:

- EN 1997-2 Eurocode 7: 2007 Geotechnical Design Part 2: Ground Investigation & Testing
- EN ISO 22475-1:2006 Geotechnical Investigation and Sampling Sampling Methods & Groundwater Measurements
- EN ISO 14688-1:2017 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 1: Identification and Description
- EN ISO 14688-2:2017 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 2: Principles for a classification
- EN ISO 14689-1:2017 Geotechnical Investigation and Testing Identification, description & classification of rock

The Eurocode 7, Part 2 – Ground Investigation and Testing GI specification shall be read in conjunction with the Specification and Related Documents for Ground Investigation in Ireland, 2nd Edition, published by Engineers Ireland in 2016.

Reporting

No responsibility can be held by IGSL Ltd for ground conditions between exploratory hole locations. The engineering logs provide ground profiles and configuration of strata relevant to the investigation depths achieved and caution should be taken when extrapolating between exploratory points. No liability is accepted for ground conditions extraneous to the investigation points. Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction, mining works or karstification below or close to the site.

This report has been prepared for Cundall and the information should not be used without their prior written permission. IGSL Ltd accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

Boring Procedures

Where required, 'shell and auger' or cable percussive boring technique is employed as defined by Section 6.3 of IS EN ISO 22475-1:2006. The boring operations, sampling and in-situ testing meet with the recommendations set out in IS EN 1997-2:2007 and BS 1377:1990 and EN ISO 22476-3:2005. The shell and auger boring technique allows for continuous sampling in clay and silt above the water table and sand and gravel below the water table (Table 2 of IS EN ISO 22475-1:2006).

It is highlighted that some disturbance and variation is unavoidable in particular ground (e.g. blowing sands, gravel / cobble dominant glacial deposits etc). Attention is drawn to this condition, whenever it is suspected. Where cobbles and boulders are recorded, no conclusion should be drawn concerning the size, presence, lithological nature, or numbers per unit volume of ground.

In-Situ Testing

Where required, Standard Penetration Tests (SPT's) are conducted strictly in accordance with Section 4.6 of IS EN 1997-2:2007. The SPT equipment (hammer energy test) has been calibrated in accordance with EN ISO 22476-3:2005 and the Energy Ratio (E_r). A calibration certificate is

available upon request. The E_r is defined as the ratio of the actual energy E_{meas} (measured energy during calibration) delivered to the drive weight assembly into the drive rod below the anvil, to the theoretical energy (E_{theor}) as calculated from the drive weight assembly. The measured number of blows (N) reported on the engineering logs are uncorrected. In sands, the energy losses due to rod length and the effect of the overburden pressure should be taken into account (see IS EN ISO 22476-3:2005).

Soil Sampling

Three categories of sampling methods are outlined in EN ISO 22475-1:2006. The categories are referenced A, B and C for any given ground conditions and are shown in Tables 1 and 2 of EN ISO 22475-1:2006. Reference should be made to EN 1997-2:2002 for guidelines on sample class and quality for strength and compressibility testing. Samples of quality classes 1 or 2 can only be obtained by using Category A sampling methods.

Class 1 thin wall undisturbed tube samples (UT100) were obtained in fine grained soils and strictly meet the requirements of EN 1997-2:2002 and EN ISO 22475-1:2006. Soil samples for laboratory tests are divided into five classes with respect to the soil properties that are assumed to remain unchanged during sampling, handling transport and storage. The minimum sample quality required for testing purposes to Eurocode 7 compatibility (EN 1997-2:2002) is shown in Table A.

EN 1997 Clause	Test	Minimum Sample Quality Class
5.5.3	Water Content	3
5.5.4	Bulk Density	2
5.5.5	Particle Density	N/S
5.5.6	Particle Size Analysis	N/S
5.5.7	Consistency Limits	4
5.5.8	Density Index	N/S
5.5.9	Soil Dispersivity	N/S
5.5.10	Frost Susceptibility	N/S
5.6.2	Organic Content	4
5.6.3	Carbonate Content	3
5.6.4	Sulphate Content	3
5.6.5	pH	3
5.6.6	Chloride Content	3
5.7	Strength Index	1
5.8	Strength Tests	1
5.9	Compressibility Tests	1
5.10	Compaction Tests	N/S
5.11	Permeability	2

Table A – Details of Sample Quality Requirements

N/S – not stated. Presume a representative sample of appropriate size.

Samples recovered from trial pits or trenches meet the requirements of IS EN ISO 22475-1. It is highlighted that unforeseen circumstances such as variations in geological strata may lead to lower quality sample classes being obtained.

Groundwater

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible, drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level. Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc.

Engineering Logging

Soil and rock identification has been based on the examination of the samples recovered and conforms with IS EN ISO 14688-1:2017 and IS EN ISO 14688-2:2017. Rock weathering classification conforms to IS EN ISO 14689-1:2017 along with discontinuities (bedding planes, joints, cleavages, faults etc) as classified in Section 6.4 of IS EN ISO 14689-1:2017 and Annex C of same. Rock mechanical indices (TCR, SCR, RQD) are defined in accordance with IS EN ISO 22475-1:2006.

Where peat has been encountered, samples have been logged in accordance with the Von Post Classification (ref. Von Post, L. 1992. Sveriges Gologiska Undersoknings torvinventering och nogra av dess hittils vunna resultat (SGU peat inventory and some preliminary results) Svenska Mosskulturforeningens Tidskrift, Jonkoping, Swedden, 36, 1-37 and Hobbs N. B. Mire morphology and the properties of some British and foreign peats. QJEG, Vol. 19, 1986.

Retention of Samples

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material will be discarded. Unless a period of retention of samples is agreed, it is our normal practice to discard all soil samples one month after submission of our final report.

1. INTRODUCTION

IGSL Limited has undertaken a ground investigation at a greenfield site in Kildare Town. The site comprises an enclosed grassed area bound on all sides by existing housing and their rear gardens. The 1.3 acre site was accessed off the R145 Station Road for the purposes of the investigation. The works were undertaken to establish the ground and groundwater conditions for a proposed new 1 to 3-storey housing development at the existing site.

Intrusive works were sited on grassed areas set out (and micro-sited where necessary) according to the Cundall drawing ATR-CDL-XX-XX-DR-GE-60801 entitled 'Proposed Exploratory Hole Location Plan'. The site is bound to the east by the houses of Campion Cresent, to the west by a low terrace of vacant properties fronting onto Station Road and to the south by Dara Park housing estate.

Figure 1 – Site Location Plan

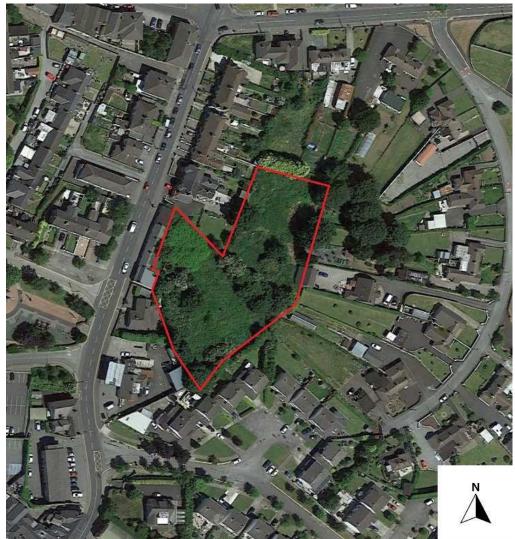


Figure 1 reproduced from Google Earth Professional (image date 06/2018)

The investigation comprised machine-dug trial pits, cable percussion boreholes, soakaway tests (to BRE365) and plate bearing tests. The investigations were executed in accordance with BS 5930, Code of Practice for Site Investigations (2015+A1:2020) and EN 1997-2 Eurocode 7 Part 2 Ground Investigation & Testing and supervised by an IGSL geotechnical engineer.

Geotechnical, chemical and environmental laboratory testing was scheduled on a range of soil samples. The geotechnical testing included moisture contents, Atterberg Limits, PSD gradings and hydrometer tests. Chemical testing was undertaken to BRE SD-1 on the soil samples. Environmental tests were undertaken on soil samples (WAC *Rilta* suite) to assess suitability for off-site disposal to landfill and/or Soil Recovery Facility.

The 'as-built' co-ordinates and ground levels are shown on the exploratory hole logs. The exploratory hole locations are plotted on the site plan in Appendix 8. Stratigraphic cross sections feature in Appendix 9 drafted in both S-N and W-E orientations. This report presents an interpretation and evaluation of the ground and groundwater conditions and an assessment of the key geotechnical issues impacting on the proposed development.

2. FIELDWORK

2.1 General

The fieldworks were undertaken in June and early July 2024 and comprised the following:

- Trial Pits (4 No.)
- Cable Percussion Boreholes (5 No.)
- Soakway Test (2 No.)
- Plate Bearing Tests (4 No.)
- o Groundwater Monitoring
- Surveying of Exploratory Hole Locations

2.2 Trial Pits

Trial pitting was performed at four locations across the site with pits ranging in depth from 2.20m to 2.70m. All trial pits were excavated, logged and sampled under the direction of an IGSL geotechnical engineer in accordance with BS 5930 (2015+A1:2020). Bulk disturbed samples (typically 20 to 30kg) were taken as the pits progressed. Environmental samples were also taken in the upper strata.

The bulk samples were placed in heavy-duty polyethylene bags. The trial pits were backfilled with the as-dug arisings and reinstated to the satisfaction of IGSL's site geotechnical engineer. The trial pit logs and photos are presented in Appendix 1 and include descriptions of the soils encountered, groundwater conditions and stability of the pit sidewalls.

2.3 Cable Percussion Boreholes

Cable percussive boring (200mm diameter) was undertaken at five locations using a Dando 150 rig. The boreholes extended to depths of between 5.40m and 6.70m. At each location, boring commenced through a hand-dug service inspection pit. Throughout boring, disturbed bulk samples were recovered at 1m intervals or change of strata during boring and these are denoted 'B' on the engineering logs. As with trial pits, environmental samples were also taken in the upper strata. These are recorded 'Env' on the logs.

Standard Penetration Tests (SPT's) were performed in the boreholes and given the nature of the soils, a solid cone was used. It is noted that the SPT N-Values reported are the number of blows for 300mm increment penetration (e.g. BH01 at 2.0m where N=18). These exclude the seating blow values, which represent the initial 150mm depth of penetration. Where partial penetration was achieved during testing, the number of blows is shown for the actual penetration depth achieved (e.g. BH04 at 6.0m where N=50/75mm). In accordance with Eurocode 7, the SPT hammer has been calibrated and the energy ratio (Er) value is incorporated on the engineering logs. It is highlighted that the SPT N-Values reported on the engineering logs are uncorrected for energy ratio. The hammer calibration certificate is presented in Appendix 2 with the logs.

Descriptions of the soils encountered, in-situ tests undertaken and samples recovered are presented on the borehole records in Appendix 2. Details of groundwater strikes and hard strata boring (i.e. chiselling) are also presented on the aforementioned records.

2.4 Soakaway Tests (to BRE 365)

Two number infiltration tests were performed to assess the suitability of the sub-soils for dispersion of storm water through a soakaway system. The infiltration tests, undertaken in the test pits (BRE_), were performed in accordance with BRE Digest 365 'Soakaway Design'. To obtain a measure of the infiltration rate of the sub-soils, water was poured into each test pit, with records taken of the fall in water level against time. Following the first soak cycle, the procedure was repeated to ensure saturation of the sub-soils. A total of three soak cycles were completed at each test location. The infiltration rate is the volume of water dispersed per unit of exposed area per unit of time, and is generally expressed as metres / minute or metres / second. Designs are based on the slowest

infiltration rate, which is generally calculated from the final soak cycle. The soakaway design logs are presented in Appendix 3.

2.5 Plate Bearing Tests

Four plate bearing tests were conducted at depths ranging 0.30m to 0.70m below ground level [bg]]. Plate testing was undertaken to evaluate the modulus of sub-grade reaction (Ks) and equivalent CBR value. A 450mm diameter plate was used for the tests with kentledge provided by a tracked excavator. Two load cycle tests, in accordance with BS 1377, were performed and the load / settlement plots, Ks and equivalent CBR values are presented in Appendix 4 of the report.

2.6 Groundwater Monitoring

Groundwater monitoring was undertaken following installation of standpipes in the two cable percussion boreholes. Groundwater levels were measured using an electric dipmeter. The levels recorded are shown in Appendix 5.

2.7 Surveying of Exploratory Hole Locations

Following completion of the exploratory works, surveying was carried out using GPS techniques. Co-ordinates (x, y) were measured to Irish Transverse Mercator and ground levels (z) established to Malin Head. The co-ordinates and ground levels are shown on the exploratory hole logs with locations shown on the exploratory hole plan in Appendix 8.

3. LABORATORY TESTING

Geotechnical laboratory testing was performed at IGSL's INAB-accredited laboratory in accordance with the methods set out in BS1377; British Standard Methods of Test for Soils for Civil Engineering Purposes; British Standards Institute:1990. The geotechnical testing included moisture contents, Atterberg Limits and particle size distribution [PSD] testing. The results from geotechnical testing on selected trial pit and borehole soils are presented in Appendix 6.

Both chemical (BRE SD1 – Suite D) and geo-environmental testing (*Rilta* Suite) was undertaken on soils. The chemical and environmental results are presented in Appendix 7.

4. DESK STUDY

4.1 Online Historical Drawings

The OSI drawing retrieved from the UCD online library "surveyed" in 1872 (Figure 3) shows the southern portion of the site and the subdivision of the rear gardens off what was known as 'SHRAUD' rather than Station Road. A '*Forge*' is located at the northern end of the terrace.

Reference to the OSI drawings from the nineteenth (1829-41) and turn of the nineteenth / twentieth century (1897-1913) shows a largely greenfield site. The back gardens of the terrace on Station Road extend to the southeast across the plot.

Brick-built Victorian semi-detached housing named '*Kilmore*' and '*Tourville*' are noted on the OSI 25" drawing.

OSI Orthophotography from 2013-18 show the site in a grassed state with encroaching boundary hedges from neighbouring gardens.

Figure 2 – Part of Map 4 Ordnance Survey Index to the Map of the Town of Kildare showing housing terrace & 'Forge'. Survey dated 1872. (OSI, 1874)

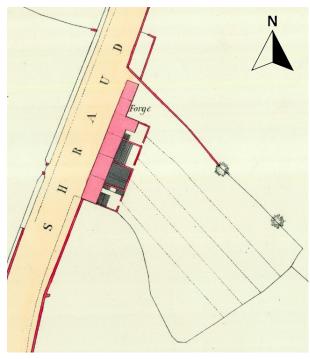
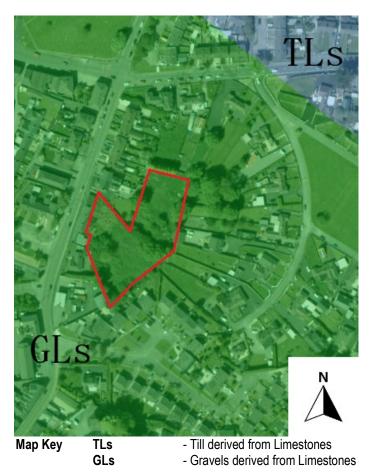


Figure 3 – OSI 6" and 25" scale drawings dated 1829-41 and 1897-1913. Aerial image dated 2013-18. Site outlined red.


Retrieved from Tailte Éireann Irish Townland and Historical Map Viewer

4.2 GSI Database Information

The Quaternary Soils map for the area (Figure 4 - retrieved from GSI website) indicates the presence of Gravels derived from Carboniferous-aged limestone.

Figure 4 – Quaternary Soils Map for the Kildare Town Site

Reference to the GSI map for the area (Figure 5, extract from 1:100,000 Solid Geology series) shows that the site is underlain by the Carboniferous-aged nodular and muddy limestone and shales of the Boston Hill Formation (BN).

BN Constant of the second seco

Figure 5 - Bedrock Geological Map for the Kildare Town Site

Key:

BN = Boston Hill Formation **RK** = Rickardstown Formation

5. GROUND CONDITIONS & GROUNDWATER

5.1 Ground Profile – Superficial Deposits

The following is a summary of the ground conditions encountered at the proposed housing development:

TOPSOIL

 Borehole locations report widely varying thicknesses of topsoil ranging from 0.10m to 0.65m. Pits show upper dark brown sandy gravelly clay soils contain many roots and rootlets. However, the pit logs suggest these are part of a mantle of Made Ground which exists up to thicknesses of 1.70m bgl (TP01).

MADE GROUND

- Despite not being registered by the drilling team in any of the five boreholes, the four trial pits each reported Made Ground to depths ranging 0.40m to 1.70m. It should be noted that the 1.70m thickness of Made Ground logged in TP01 was measured from the top of a localised embankment and as such does not imply Made Ground to 1.70m below existing ground level on the site. The greatest depth to the base of Made Ground was measured in TP04 to the north of the site where the pit showed a thickness of 1.50m (99.29m OD) of Made Ground.
- The Made Ground at TP01 (inclusive of the embankment of heaped soil) was described as a dark brown sandy gravelly Silt with rare waste (plastic, cans), rare roothair, rootlets and pockets of organic material. It was logged to a depth of 1.70m (101.29m OD) in the pit.
- A thin cover of Made Ground was excavated in TP02. Rare waste (discarded rubbish) was remarked in the layer of dark brown sandy gravelly CLAY with rootlets to a depth of 0.40m bgl (101.34m OD).
- At TP03, a 0.70m thick cover of Made Ground was identified. No anthropogenic content was observed however. The stratum extended to a depth of 0.70m (101.05m OD).
- As noted earlier, the thickest accumulation of Made Ground was found in TP04 where a depth of 1.50m (99.29m OD) was recorded. The soil was logged as a dark brown sandy gravelly Clay with rare waste (discarded rubbish) and rootlets.
- The geo-environmental testing performed on samples from both TP01 and TP04 where Made Ground was logged, found no metallic or organic exceedance which might suggest Made Ground. However, a very slight Total 17 Polycyclic Aromatic Hydrocarbon signature was detected in a sample from BH03 at 0.65m bgl. This may indicate the presence of contaminated ground locally.

OVERBURDEN DEPOSITS

- Pit TP01, to the east of the site, revealed from 1.70m (101.29m OD) a firm to stiff light brown slightly sandy slightly gravelly SILT/CLAY with a low cobble content. The pit was ended at 2.60m (100.39m OD) in this same material.
- TP02 and TP04 exhibited a similar soil profile. In both pits the uppermost indigenous soils were described as stiff light brown sandy gravelly silty CLAY to ca. 1.30m / 1.50m bgl.
- From 1.30m (TP02) and 1.50m (TP04) however, the deposits were classed as (dense to medium dense) greyish brown clayey/silty very sandy GRAVEL with a medium cobble

content. This deposit was found to the base of both trial pits to depths of 2.20m (99.54m OD) and 2.70m (98.09m OD).

- TP03, similar to TP01, was found to have stiff light brown sandy gravelly CLAY with a low cobble content. The pit ended in this material at 2.20m bgl.
- Each of the five boreholes conducted on site intercepted a light brown sandy gravelly CLAY/SILT, reported firm based on SPT N-values (See Figure 6). From ca. 1.50m to 2.50m, stiff ground was noted, again based on SPT N-values. The soils were still described as fine grained, comprising brown slightly sandy slightly gravelly CLAY.
- The entry of coarse medium dense to dense slightly clayey/silty very sandy GRAVEL was not recorded until depths ranging 3.50m to 4.50m bgl. Save for BH04, all bores terminated in this granular deposit between 5.40m and 6.20m. A sieve analysis undertaken on a sample from the base of BH04 suggests the soil profile transitioned to a stiff brown slightly sandy slightly gravelly SILT/CLAY. BH04 terminated at 6.70m bgl (95.44m OD).
- In-situ testing was undertaken during the construction of all five cable percussion bores. The standard penetration test [SPT] allows for an appraisal of the ground stiffness. A plot showing the blowcounts generated from testing is presented in Figure 6. SPT testing undertaken in the natural overburden soils generally proved the presence of initially firm becoming stiff to eventually very stiff CLAY passing to a dense GRAVEL deposit with depth. From 5m bgl, many of the test drives were reported as refusals once in the deeperseated soils and therefore appear along the right-hand side of the plot.

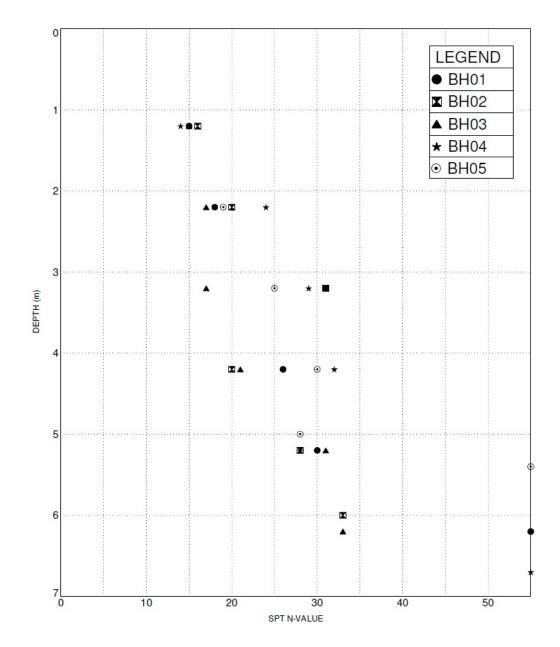


Figure 6 – SPT Plot versus Depth for Cable Percussion boreholes

Figure 7A - 7F – **Soil profiles in pits TP01, TP03 & TP04. Fig 7A** Sidewall in TP01 to 2.60m base – dry pit. Dark brown sandy gravelly SILT with rare waste (plastic, cans), rare roothair, rootlets, pockets of organic material and lenses of sand (MADE GROUND) to 1.70m bgl. Firm to stiff light brown slightly sandy slightly gravelly SILT/CLAY logged to pit end depth of 2.60m. Pit reported to have been excavated into an embankment. Fig 7B TP01 spoil. **Fig 7C** TP03 sidewall showing MG / Clay to 0.70m. Made Ground underlain by stiff light brown sandy gravelly CLAY with cobbles to 2.20m bgl. **Fig 7D** TP03 spoil. **Fig 7E** TP04 sidewall showing MG / dark brown sandy gravelly Clay to 1.50m. A thin layer of stiff light brown sandy gravelly silty CLAY extended from 1.50-1.60m. The pit ended in (dense to medium dense) greyish brown clayey/silty very sandy GRAVEL to 2.70m. **Fig 7F** TP04 spoil.

Fig 7C

Fig 7E

Fig 7B

Fig 7F

5.2 Bedrock

As referenced earlier in Section 4.2, the GSI rock map for the area (Figure 5, 1:100,000 Solid Geology series) shows that the Boston Hill Formation underlies the site. The formation is comprised of nodular and muddy limestone and shales. Rotary core drilling of bedrock was not specified as part of the scope.

5.3 Groundwater

Water strikes were absent in the four trial pits to their base depths ranging 2.20m to 2.70m bgl. Water was added to boreholes to promote shelling in dry sandy gravel. No actual strikes were observed in the boreholes but water was dipped following drilling and at the end of each borehole. The addition of water to facilitate boring may have served to artificially inflate "groundwater" depths measured in open bores. Wells were installed in both bores BH02 and BH05 to allow longer term monitoring.

As noted, standing water was measured following completion of boring shifts and at the end of actual borehole construction. The water observations are presented in Table 1. The potential does exist for there to be seasonal changes in groundwater level. Additionally, a consistent groundwater level may take time to re-establish.

Exploratory Hole No.	Remarks / Stratum of water ingress (m OD)
BH01	Water dipped at 2.50m bgl / 99.59m OD at the end of BH. BH at 6.20m (27-06-24).
	Water dipped at 4.80m bgl / 96.77m OD at the end of Day 1. BH at 5.0m (25-06-24).
BH02	Water dipped at 5.80m bgl / 95.77m OD at the end of BH. BH at 6.0m (26-06-24).
	Well dipped 11-09-24 – Dry (Well base 5.60m)
	Bore reported dry at 4.0m bgl / 97.10m OD at the end of Day 1 (28-06-24).
BH03	Water dipped at 5.60m bgl / 96.10m OD at the end of BH. BH at 6.20m (29-06-24).
	Water dipped at 5.0m bgl / 97.14m OD at the end of Day 2. BH at 5.20m (19-06-24).
BH04	Water dipped at 6.0m bgl / 96.14m OD at the end of BH. BH at 6.70m (20-06-24).
BH05	Water was dipped at 2.40m bgl / 98.43m OD at the end of BH. BH at 5.40m (03-07-24).
	Well dipped 11-09-24. Groundwater at 3.80m bgl.

Table 1 – Water measurements in on-site exploratory holes

6. GROUND ASSESSMENT & ENGINEERING RECOMMENDATIONS

6.1 General

In light of the ground investigation findings, the following geotechnical issues are developed and discussed for engineering design:

- Bearing Capacity & Foundations
- Ground Bearing Slab
- Groundwater / Infiltration
- Slope / Batters
- Pavement Construction
- Buried Concrete
- Waste Acceptance Criteria [WAC] & Environmental Testing Soils destined for Landfill

6.2 Bearing Capacity & Foundations

Boreholes established near surface firm and firm to stiff sandy gravelly SILT/CLAY from ca. 0.50m. However, the trial pits noted significant thicknesses of Made Ground gravelly Clay from 0.40m to 1.70m. In the case of TP03, Made Ground was logged to 1.50m depth, an equivalent level of 99.29m OD. Dig depths will ultimately be influenced by the localised thicknesses of Made Ground. It is expected that excavate and replace methods will be required whereby low-grade concrete (C20) would be used to build up dig levels to underside of foundations. In the trial pits, Made Ground was found to be underlain by a natural firm to stiff, in some cases stiff CLAY/SILT.

As can be seen from the SPT N-Values v Depth plot (Figure 6), the soils from c1.20 to 2.20m are classed as firm to stiff. According to SPT testing, there is consistency in the strength profile of the upper soils, a feature which might not be expected given the discovery of Made Ground in trial pits - up to 1.50m deep in TP04.

Overall, accounting for the presence of Made Ground (potentially up to 1.50m deep), the natural soils are generally firm becoming firm to stiff. At a dig depth of 1.50m, these soils should provide an allowable bearing capacity of 125kPa. Where Made Ground is absent, and where suitably firm / stiff indigenous soils are present higher in the stratigraphy, the dig depth could be reduced somewhat, ie., to ca. 0.70-0.80m.

Should higher bearing pressures be required, the underlying superficial deposits show some increase in strength. The SPT plot generated from borehole in situ testing suggests stiff CLAY occurs from ca. 2m depth. The occurrence of sandy Gravel varies from 1.30 to 1.60m in trial pits and from 3.50 to 4.50m in boreholes. Gravels were intercepted in two of the trial pits prior to their termination. Their presence in trial pits implies sandy Gravel occurs higher in the stratigraphy than was evidenced in the boreholes.

The medium dense sandy Gravel (1.30-1.60m trial pits) should provide an allowable bearing capacity of 150kPa. Pits ended in the denser Gravel at depths ranging 2.20m to 2.70m. Capacities of 200kPa should be achieveable in this deeper-seated Gravel from approximately 2.0m. Although not viewed in boreholes until 3.50m bgl, a stiff CLAY exists from ca. 2.0 to 2.50m bgl. Therefore, a bearing capacity value of 200kPa could also be attributed to this layer at ca. 2.0m bgl.

Given the variable conditions on site coupled with inconsistent Made Ground thicknesses, excavation of pads / strip footings on site should be monitored by a suitably qualified engineering geologist / geotechnical engineer. Plate load tests (minimum of 600mm diameter), if practical given dig depths, are particularly useful in evaluating performance under loading and deciding on a suitable formation depth.

6.3 Ground Bearing Slab

In order to support conventional ground bearing slabs, it is recommended that a firm (medium strength) formation is reached (minimum CBR value of 3% by plate load test method Any soft or low strength upper soils / Made Ground should be removed before placement of hardcore (T0, T1).

It is possible that plastic dominant Made Ground and/or organic-containing material (wood / root fragments) will be intercepted across the dig area. Where soft or Made Ground soils occur, they will require special attention. Depending on their areal extent, they could be excavated and replaced with imported T0 or T1 Struc unbound granular fill, compacted in layers. It will be important to discern the extent and depth of Made Ground mantling the site as this will better inform the quantities of soil for eventual removal and replacement. Additional pitting / window sampling in the area of both TP01 and TP04 would be recommended in this case.

T0 / T1 used on site should meet the requirements in Annex E of SR21:2014+A1:2016 and would be expected, upon compaction, to achieve a CBR of 15% (as determined by plate load test method).

Ahead of using engineered FILL beneath floor slabs, imported granular fill 'hardcore' used in any foundation application or under concrete slabs at the site should meet the requirements of Annex E of SR 21;2014+A1;2016. It is recommended that T0 Struc is used in conjunction with T1 Struc. The T0 and T1 hardcore fills should be rigorously tested (independent of the quarry source) to ensure that they meet the physical, durability, chemical and mineralogical characteristics as set out in the aforementioned Annex E of SR 21;2014+A1;2016. Independent testing on samples of the proposed source hardcore is strongly recommended in advance of the material being used on the site. As a minimum, particle size gradings, chemical tests and geological classification / simplified petrology are advised to screen the material and independently assess compliance with Annex E, SR21;2014+A1;2016.

Compaction / Placement of imported granular fill or hardcore will need to achieve a low air voids (<5%) and ensure that settlement is not an issue. In the case of layer thickness, number of roller passes and mass per metre and width of roll should meet the guidelines in I.S. 888:2016. Layer thickness should not exceed 200mm using a smooth drum roller with a mass per metre of roll of not less than 5400 kg.

6.4 Groundwater / Infiltration

As noted in Section 5.3, groundwater strikes were absent in both trial pits and boreholes. However, water was later reported in the base of boreholes upon completion. Returning to site in September 2024, the wells installed at BH02 and BH05 were dipped. BH02 was found to be dry to a base depth of 5.60m bgl (95.97m OD). Water was dipped in BH05 at 3.80m bgl. Based on these findings and those made during the construction of the intrusive exploratory holes, shallow temporary excavation should generally see an absence of water ingress in natural deposits.

Should water be encountered during deeper digs / excavations, it is likely that de-watering will be required through a combination of strategic sump pumping and / or perimeter drains. As mentioned in Section 5.3, the potential does exist for there to be seasonal changes in groundwater level. The works were carried out during summer 2024. It may be the case that the various waterbodies at depth are subject to seasonal variations.

Two soakaway tests were conducted on the site. The tests were carried out in the overburden soils within open excavations. The test pits were excavated through the uppermost firm / stiff silty CLAY and clay Made Ground in the case of SA02 (TP04), exposing the sandy GRAVEL at depth. The permeable nature of the coarse-grained soils may account for the moderate to low infiltration observed at both test pits.

The soils demonstrated a natural permeability, providing low to moderate natural soakage. The existence of lowerbound dry Gravel in all five boreholes suggests the coarse-grained soils may be extensive at depth. This may warrant further examination to assess the areal extent of the permeable deposit.

Soakaway Test No.	Depth of Test (m bgl)	f (m/min)	f (m/sec)
SA01 (TP02) (Stage 1)	1.60	0.05217 m/min	8.695E -04 m/sec
SA01 (TP02) (Stage 2)	1.60	0.01664 m/min	2.773E -04 m/sec
SA01 (TP02) (Stage 3)	1.60	0.01431 m/min	2.385E -04m/sec
SA02 (TP04) (Stage 1)	1.75	0.01214 m/min	2.02E -04 m/sec
SA02 (TP04) (Stage 2)	1.75	0.01143 m/min	1.90E -04 m/sec
SA02 (TP04) (Stage 3)	1.75	0.01262 m/min	2.10E -04m/sec

Table 2 – Measured infiltration rates (f) expressed as exposed area (metre) per unit time (minute)

6.5 Slopes / Batters

A maximum slope angle of 1V to 1.5H (33°) is recommended for temporary berms or batters formed within the upper medium strength fine grained soils. A long-term slope angle of 1V to 2 (26°) should be appropriate for batters in the same soils. Where deep excavation works are required in the superficial deposits, the use of trench box support is advised, especially given the potential for encountering coarse-grained depsits at depth. In addition, the uppermost fine subsoils will be susceptible to softening and degradation and surface water or groundwater ingress can lead to a significant reduction in shear strength. Perched water can exist locally (potentially in isolated lenses of sandy Gravel) and this should be considered in risk assessments for excavations.

Site operatives or personnel should not enter unsupported excavations and should be informed of potential risks. Where site operatives or engineering staff work in close proximity to temporary slopes or batters, these should be inspected and approved by a suitably experienced civil engineer, preferably with geotechnical experience. Where there is a risk of spalling of battered slopes, the use of a geogrid is recommended. The geogrid should be anchored at the top and bottom of the ridge face to contain particles such as gravel, cobbles and / or boulders that may become dislodged.

Man-entry into any deep excavation should be appropriately assessed and an AF3 form completed. The AF3 form details the thorough examination of an open excavation as well as documenting daily worksite inspections.

6.6 Pavement Construction

Four plate load tests were conducted on the shallow subsoils at depths ranging 0.30m to 0.70m bgl. The plate load test permits an assessment of the in-situ stiffness of the upper soil. The test results are reported in Appendix 4 of the report and are summarised below in Table 3. Equivalent CBR values of 1.8 to 8.6% were determined on the initial loading cycles (Cycle 1) with values of 4.1 to 17.4% on the reload cycles (Cycle 2). It should be noted that each plate load test was conducted on brown sandy gravelly Clay soils, thought to be Made Ground. An improvement in stiffness was noted from load to reload cycle which would suggest proof-rolling of the subgrade soils ahead of hardcore placement will be of benefit to the overall strength of the layer.

Test No.	Depth	CBR at Load Cycle (%)	CBR at Re-Load (%)
PBT 01*	0.65	8.6	9.4
PBT 02*	0.30	5.5	17.4
PBT 03*	0.50	2.9	4.7
PBT 04*	0.70	1.8	4.1

Table 3 – Equivalent CBR % Values obtained in Plate Bearing Testing

*Test performed on Made Ground - Based on Trial Pit Logs

Based on the plate load test results, and in accordance with the Design Guidance for Road Pavement (HD 25-26/10:2010), a conservative CBR design value of 2% is recommended for the near surface soils in their current state. Ahead of road construction, and following <u>static</u> compaction of the soils, a further set of plate testing (450 or 600mm diameter) could be undertaken to assess the improvement in stiffness of the formation. Given the improvement seen in testing (from load to reload), if the same test levels are again adopted it is likely that some improvement will be achieved. Likewise, should a deeper stratum be chosen as road formation level, there may be a marked improvement registered in subgrade quality, ie., a higher CBR value obtained in plate testing.

Assuming a design CBR value of 2% for the upper soils then a minimum 6F capping thickness of 500 to 600mm and a sub-base thickness (UGM) of 150mm is recommended to support road pavements. If or where very low strength subgrade occurs (CBR <1%) either geogrid reinforcement or the use of starter material (Class 6A / 6B) could be considered to provide a suitable foundation layer especially for access or haul / spine roads if they traverse low strength subgrades. Such a mechanically stabilized layer could consist of a layer of geogrid with 500 to 600mm of granular fill (well graded aggregate with maximum particle size of 75mm). Where geogrid is not utilized then approximately 500mm build-up of Class 6A / 6B starter layer material could be considered in conjunction with a capping layer (Class 6F capping in line with Series 600 of TII SRW). This should provide a satisfactory foundation layer to adequately support the subbase / pavement (150mm of unbound granular material (UGM) in accordance with Table 2.1 of CC-SPW-00800 (TII August 2022). The aforementioned Class 6A / 6B material could be used in conjunction with ca. 300mm of 6F capping material. This should provide a robust foundation layer.

The time of year will play a role in sub-grade strength especially during winter or early spring where heavy rainfall would cause degradation / wash-out of the formation or dilatancy in the upper occasionally silt-dominant subsoil. Oppositely, in summer, the performance of the soil subgrade may be significantly improved dependent on moisture content levels in the upper soil. If there are particular concerns regarding the condition of the formation soils, then additional plate bearing tests should be considered during construction to verify or validate the stiffness / density of the formation soils and adequate capping thickness.

The durability of the capping material should be confirmed as capping will be exposed to the elements (especially if the works are undertaken during the winter / spring period). It is important that argillaceous sedimentary rocks (i.e. muddy limestone, calcareous mudstone, shale, etc.) are not used as capping or as a starter layer. These have high potential to give rise to degradation (i.e. poor durability and soundness) and slaking and therefore would not be suitable.

All granular fills / unbound granular mixtures (UGM) used in pavement construction should be tested and approved in advance of being used in pavement construction. They should meet the compositional, chemical and soundness requirements as prescribed in the TII publication entitled Road Pavements – Unbound and Hydraulically Bound Mixtures (CC-SPW-00800 – dated August 2022).

Compaction / Placement of imported granular fill or hardcore should achieve a low air voids (<5%) and ensure that settlement is not an issue. The number of roller passes and mass per metre and width of roll should meet the guidelines in I.S. 888:2016 Annex B: Compaction requirements for unbound mixtures Table B.1. It is recommended to use a smooth drum roller (without vibration) with a mass per metre of roll of not less than 5400kg. Unbound mixtures should not be laid in layers greater than 150mm if using this compaction method.

6.7 Buried Concrete

The chemical analysis tests on natural soil samples show pH values ranging from 8.3 to 8.6. The sulphate aqueous extract (SO₄) results from the borehole and trial pit soil samples determined values of <10mg/l. This would suggest BRE Design Sulphate Class DS-1. Table C1 ACEC for greenfield sites in BRE SD 1 (2005) can be used in the selection and design of concrete. If mobile groundwater conditions prevail at the site and given the pH values obtained from the testing, then ACEC class AC-1^d would be expected to be appropriate for buried concrete in the soils. In line with I.S. EN 206-1:2013, concrete could be manufactured to Class XA1 where founded or positioned in the upper soils (Class XA1 being \ge 2000 and \le 3000 SO₄²⁻ mg/kg).

6.8 Waste Acceptance Criteria [WAC] & Environmental Testing

Five soil samples selected from trial pits and shallow boreholes were analysed for their compliance to the criteria set out in the 2002 European Landfill Directive (2003/33/EC). Two of the five samples tested proved compliant with Waste Acceptance Criteria and therefore would be accepted by an inert landfill.

The three exceptions were soil specimens from BH03 (0.65m), BH04 (0.35m) and BH05 (1.20m). Each of the three were noted to exceed inert waste limits for Total Organic Carbon [TOC]. Indeed, the samples from both BH03 and BH05 exceeded hazardous limits for TOC. The samples would therefore not be accepted by an inert landfill due to their TOC content and should instead be dealt with by a suitably licensed waste facilitator. Table 4 below shows the concentration of Total Organic Carbon found in the aforementioned soil samples compared with the published inert, non-hazardous and hazardous landfill limits.

Parameter	Landfill Limits	BH03	BH04	BH05
	Inert / non-Haz / Haz	0.65m	0.35m	1.20m
Total Organic Carbon	3% - 5% - 6%	8.6%	4.1%	6.9%
Dissolved Organic Carbon	500 – 800 – 1000 mg/kg	<50	59	<50
Loss on Ignition (LOI)	10% (Hazardous)	20%	6.5%	14%

Table 4 – Elevated values (WAC Testing)

In the case of the sample from BH04, where only the <u>inert</u> value for TOC is exceeded, the EU Landfill Directive allows for the following dispensation:

"In the case of soils, a higher limit value may be admitted by the competent authority, provided the DOC value of 500 mg/kg is achieved at L/S = 10 l/kg, either at the soil's own pH or at a pH value between 7.5 and 8.0."

Notably the DOC [Dissolved Organic Carbon] content did not exceed 500mg/kg for the sample from BH04 (59mg/kg). In certain inert landfills, an additional criterion is set whereby samples with elevated TOC levels must also exhibit Loss on Ignition (LOI) levels that are less than 5% by weight. This test returned a value of 6.5% for BH04. In any event, given that the only single exceedance noted in BH04 (0.35m) was restricted to one parameter, it seems possible that the sample may be accepted by an inert landfill. The relaxation of the criteria as outlined here should be confirmed with the respective inert landfill ahead of soil removal from site.

The results obtained from the testing of the two inert samples (TP01 at 0.40m & TP04 at 0.50m) were compared with published limits set out in the EPA Guidance on waste acceptance criteria at authorized soil recovery facilities (EPA, 2020). With regard to each of the criteria set for Total Organic Carbon and for the organic compounds BTEX, Mineral Oil, PAH and PCB's, the EPA limits were met.

Furthermore, in relation to total metal concentrations, the EPA Guidance document employs a set of specific metal trigger limits to each of seven geochemical domains across the country. Depending on the domain in which the accepting recovery site falls, there are specific limits prescribed for certain metals. In order to further analyse the soils suitability for acceptance at an EPA recovery facility, the domain of the receiving facility would have to be known. For the purposes of this report, the maximum concentrations and / or trigger levels in soil and stone for soil recovery facilities for Geochemical Domain 2 (Carboniferous limestone and related rocks) are applied. In relation to the remaining two samples (TP01 at 0.40m & TP04 at 0.50m), both exhibit metal concentrations within those published for Geochemical Domain 2 and would therefore, based on metal and TOC / organic compound contents be accepted at an authorized soil recovery facility.

Furthermore, written into the EPA (2002) document, only "soil and stone containing up to <u>2%</u> nonnatural materials by weight is acceptable, ie., anthropogenic or man-made substances such as rubble, concrete, bricks, metal and bitumen that are non-natural to the environment from which the material was extracted". This 2% content level for man-made materials would have to be complied with should the soils be exported to an EPA-licenced Soil Recovery Facility.

In relation to sending the analysed samples to an EPA-licenced Soil Recovery Facility, the limits for acceptance at the nominated facility should be checked against the results listed in the test record sheet - final report.

Note that, depending on the extent and depth of envisaged excavations and quantities for soil removal (if required), a landfill or Soil Recovery Facility may require additional testing to achieve the frequency of analysis (i.e. number of samples per unit volume of excavation) that meets their licence requirements.

No asbestos was detected in screens ran on the five soil samples.

It would be prudent, given the varying degree of compliance with WAC limits, that a waste characterisation assessment of the results would be carried out in accordance with the Environmental Protection Agency (EPA) Guidelines on the Classification of Waste (2015). We would recommend that a specialist environmental consultant (such as O'Callaghan Moran Consultants) be engaged to undertake this assessment.

REFERENCES

- **1.0** BS 5930 (2015+A1:2020) Code of Practice for Site Investigation, British Standards Institution (BSI).
- 2.0 BS 1377 (1990) Methods of Testing of Soils for Civil Engineering Purposes, BSI.
- 3.0 Eurocode 7, Part 2: Ground Investigation & Testing (EN 1997-2:2007)
- 4.0 Irish Standard IS 888:2016, NSAI (Published in March 2016)
- 5.0 OSI (1874). Map 4 (Colour) from Ordnance Survey Index to the Map of the Town of Kildare. 1:500 Ten feet to one statute mile. Retrieved September 10, 2024 from the UCD Digital Library https://digital.ucd.ie/view/ucdlib:41166
- **6.0** Site Investigation Practice: Assessing BS 5930 (1986), Geological Society Special Publication, No. 2.
- 7.0 Sowers, G.F. (1962) Shallow Foundations, Foundation Engineering, McGraw Hill
- 8.0 SR21:2014+A1:2016 Guidance on the use of IS EN 13242+A1:2007
- **9.0** Terzaghi, K., Peck, R.B., & Mesri, G. (1996). Soil Mechanics in Engineering, 3rd Edition. New York, Wiley.
- 10.0 Tomlinson, M.J. Pile Design & Construction Practice, 4th Edition

Appendix 1

Trial Pit Logs & Photographs

	And								I	REPORT N	JMBER		
	BSL	1	RIAL PIT I	RECO	RD					254	468		
CON	TRACT	An Triantán, Station Road Housin	g					TRIAL P	IT NO.	TP0			
LOG	GED BY	ОК	CO-ORDINAT	ES		98.46 E 76.92 N		- SHEET DATE S ⁻ DATE C		20/06	Sheet 1 of 1 20/06/2024 ED 20/06/2024		
CLIE	NT	Kildare County Council Cundall	GROUND LE	/EL (m)	EL (m) 102.99			EXCAVA METHO		Track	ed exca	avator	
									Samples		a)		
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)	
0.0 - - - - - - - - - - - - - - - - - -	rare was	GROUND: Dark brown sandy gravel ste (plastics, cans), rare roothair, ro iic material and rare lenses of orang layey Sand.	ly SILT with otlets, pockets ge brown and					AA229995 Env	Env	0.40-0.50 0.40-0.50			
- 2.0	medium	stiff light brown slightly sandy slightl AY with a low cobble content. Sand . Gravel is fine to coarse, subangula s are subangular to subrounded.	y gravelly l is fine to ar to rounded.		1.70	101.29		AA229996 Env AA229997	Env	1.50-1.60 1.50-1.60 2.30-2.40			
- - - - - - - - - - -	Obstruc End of 1	tion Trial Pit at 2.60m			2.60	100.39							
Dry Stab Good	ility d eral Rema	Conditions rks to slow progress in very stiff ground	I. PBT01 carried	l out in pi	it.								

-EAT
lgsl

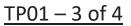
TRIAL PIT RECORD

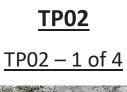
REPORT NUMBER

25468	
20700	

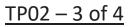
<u>n</u>	3SL/									_0	100	
CON	TRACT	An Triantán, Station Road Hous	ing					TRIAL P	IT NO.	TP02	2 t 1 of 1	
LOG	GED BY	ОК	CO-ORDINAT	ES		67.26 E 70.08 N		DATE ST		20/06	/2024	
CLIE ENGI	NT NEER	Kildare County Council Cundall	GROUND LEV	/EL (m)	EL (m) 101.74						acked excavato	
									Samples		a)	ometer
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	Stiff ligh cobble of to coars	GROUND: Dark brown sandy grav ste (discarded rubbish) and rare ro t brown sandy gravelly silty CLAY content. Sand is fine to medium. G e, subangular to rounded. Cobble ular to subrounded.		0.40	101.34		AA229988 Env AA229989 Env	Env	0.30-0.40 0.30-0.40 0.60-0.70 0.60-0.70			
	sandy G	to medium dense) Greyish brown RAVEL. Sand is coarse. Gravel is ular to rounded.			100.44		AA229990 B		1.60-1.70			
2.0	clayey/s and a lo Gravel is are suba Obstruc	to medium dense) Greyish brown ilty SAND and GRAVEL with a low w boulder content. Sand is mediu s fine to coarse, subangular to rou angular to subrounded. Boulders a tion Frial Pit at 2.20m	v cobble content m to coarse. Inded. Cobbles		2.20	99.74 99.54		AA229991	В	2.10-2.20		
3.0												
Grou Dry	ndwater (Conditions										
Stab i Good												
	ral Rema	rks to possible boulder refusal. PBT0.	2 and SA01 carrie	ed out at	TP02.							

		т	RIAL PIT	RECO	RD					REPORT N	umber 468		
		An Triantán, Station Road Housin						TRIAL P	IT NO.	TPO	3		
	SINEER Cundall		-				SHEET			• TP03 Sheet 1 of 1			
LOG	GED BY	ОК	CO-ORDINAT		672,9 712,5	672,945.80 E 712,565.60 N		DATE STARTE					
CLIE			GROUND LEV	/EL (m)	101.7	5		EXCAVATION METHOD		Tracked ex			
									Sample	es	(Pa)	ometer	
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)	
0.0					0.70	101.05		AA229998 Env	B Env	0.50-0.60 0.50-0.60			
- - - - - - - - - - - - -	content.	Sand is fine to medium. Gravel is fi	ne to coarse.					AA2299999 Env	B Env	1.40-1.50 1.40-1.50			
2.0 					2.20	99.55		AA230000	B	2.10-2.20			
- - - - - - - - - - - -													
	undwater (Conditions		<u> </u>	<u> </u>	<u> </u>	L	<u> </u>				<u> </u>	
Good													
	eral Rema Inded due	r ks to slow progress in very stiff ground	. PBT03 carriec	l out in pi	it.								

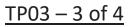

lgar/						25468					
CONTRACT	An Triantán, Station Road Housir	ng				TRIAL P	IT NO.	TP04	4 t 1 of 1		
LOGGED BY	ОК	CO-ORDINATES		995.10 E 611.60 N		DATE ST		0 20/06	6/2024 6/2024	4	
CLIENT ENGINEER	Kildare County Council Cundall	GROUND LEVEL	L (m) 100.7	79		EXCAVA METHO		Track	ed exca	avato	
							Sample	s	a)	meter	
	Geotechnical Description		Legend Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer	
 MADE rare w and ro 1.0 	GROUND: Dark brown sandy grave aste (discarded rubbish) and occasic otlets.	lly CLAY with onal roothair				4A229992 Env		0.50-0.60 0.50-0.60			
(Dense sandy	ht brown sandy gravelly silty CLAY. 4 n. Gravel is fine to coarse, subangul inded. a to medium dense) Greyish brown c GRAVEL with a medium cobble cont n to coarse. Gravel is fine to coarse, d. Cobbles are subangular to subrou	ar to	1.50 1.50 1.60 1.60 1.60 1.60 1.60 1.60 1.60	99.29 99.19		4A229993 Env	B Env	1.50-1.60 1.50-1.60			
Obstru End of	ction Trial Pit at 2.70m		2.70 759 759 6-50 758 759 759 759 759 759 759 759 759 759 759	98.09		AA229994	В	2.40-2.60			
Groundwate Dry	Conditions										
Stability Good											
General Rem Pit excavated	arks I into embankment. Pit ended due to	slow progress in de	ense around	PBT04 ar	nd SA02	carried ou	ut at TP	04.			



<u>TP01 – 2 of 4</u>



<u>TP02 – 2 of 4</u>



<u>TP03 – 2 of 4</u>

<u>TP04 – 1 of 4</u>

<u>TP04 – 2 of 4</u>

<u>TP04 – 4 of 4</u>

Appendix 2

Cable Percussion Borehole Logs

SPT Er Calibration Certificate

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25468

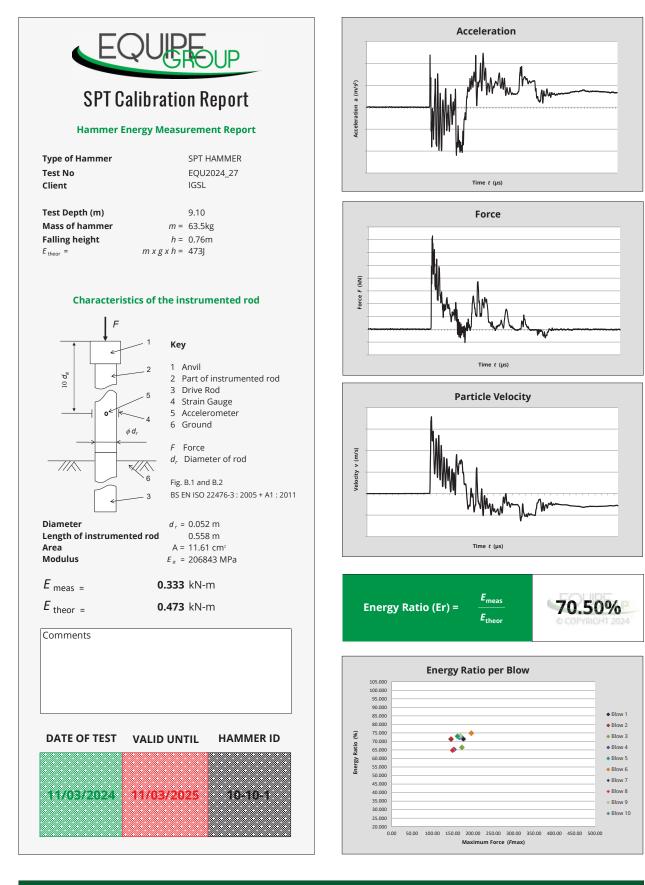
CO-(ORDIN	ATES		984.30 E 582.30 N	RIG TYP	'E OLE DIAM	FTFP /•	nm)	Dando 15 200	50	SHEET		Sheet 1 of 1	
GRC	UND L	_EVEL (n		102.09		OLE DIAM			200 6.20				TED 27/06/2024	
CLIE	ENT INEER		lare Count Idall	ty Council		MMER REI (RATIO (%			10-10-1 70.5		BORED		R.Allan 3Y OK	
										San	nples			
Depth (m)			Des	scription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
	TOPS	OIL												0,0
	Browr	n SILT/CL	AY with ro	oots	/	× × ×					0.50.0.7			
╞	Firm li	iaht brow	n sandv g	ravelly SILT				0.70	AA227517 Env AA227518	ENV	0.50-0.7 0.50-0.7 0.70-1.2	0		
1		.g	n oundy g			× · · × · ×			Env	ENV	0.70-1.2	D	N = 15	
						×°× × × ×			AA227519 Env	B ENV	1.20-1.7 1.20-1.7		(2, 3, 4, 4, 4, 3)	
						× o ×								
2						× × ×			AA227520	в	2.20-2.7		N = 18	
						× × × × × ×			Env	ENV	2.20-2.7		(3, 4, 4, 5, 3, 6)	
-	Stiff to	vorv etif	f clightly o	andy slightly grave	llv	^ × ^ ×	99.29	2.80	_					
3	SILT/0	CLAY wit	h occasior	nal cobbles	iiy				AA227521	в	3.20-3.7	n	N = 31	
]		101227021		0.20 0.7		(4, 5, 7, 7, 8, 9)	
4									AA227522	в	4.20-4.7	D	N = 26	
╞	Mediu	ım dense	brown/are	ey slightly clayey/si	ltv verv	×	97.59	4.50	_				(3, 5, 6, 6, 7, 7)	
				asional cobbles	ity very		-							
5						1 a a U s			AA227523	в	5.20-5.7	D	N = 30	
						× 0 + 0							(4, 5, 6, 7, 8, 9)	
							2							
6	Obstru	uction					95.89	6.20	_				N = 50/225 mm	
			le at 6.20 r	m									(7, 12, 14, 16, 20)	
7														
8														
9														
HAF			Time			Wate	r Ca	sing	Sealed	Ris	<u>а т</u>	ime V	VATER STRIKE DET	AILS
		To (m)	(h)	Comments		Strik		epth	At	То		nin)	Comments	
6.1	10	6.20	1.5										No water strike	
														CDEC
NGT		TION DE				Dat		Hole	Casing	De	pth to	Comm	ROUNDWATER PRO	UNES
	ate			o RZ Base	Туре	27-06		Depth 6.20	Depth Nil	W	ater	End of B		
								. ==						
		1												
{EM	IARKS	CAT sc	anned loca	ation and hand dug	g inspection	pit carried	out.	Sam	ple Legen Il Disturbed (tub) Disturbed	d				

REPORT NUMBER

	NTRACT		anan, S	tation Road									BOREH SHEET		5.	BH02 Sheet 1 of 1	
	ORDINAT		712,54	3.32 E 4.19 N 101.57	BOI		LE DIAMI LE DEPT		mm)	2	ando 15 00 .00					D 25/06/2024 D 26/06/2024	
			e County	Council	-			-			0-10-1		BORED PROCE		вv	R.Allan	
	SINEER	Cunda	ui		ENE	RGY	RATIO (%	°)		1	0.5		nples	55ED	ы	OK	
Depth (m)			Desc	cription			Legend	Flevation	Depth (m)		Ref. Number	Sample Type	· · · · · · · · · · · · · · · · · · ·	Becoverv		Field Test Results	Standpipe Details
0	TOPSOI	L					<u> </u>	101.22	2 0.3	5	AA227510	в	0.20-0.3		-		
1	Firm ligh	t brown s	sandy gra	avelly CLA	Y			101.22	0.0		Env AA227511 Env	ENV B ENV	0.20-0.3 0.35-1.2 0.35-1.2	35 20			
						- - - - - -					AA227512 Env	B ENV	1.20-1.7 1.20-1.7	70 70		N = 16 (2, 3, 4, 4, 4, 4)	
2	Stiff to ve CLAY	ery stiff b	rown slig	htly sandy	slightly gravel	ly -		99.47	2.1		AA227513 Env	B ENV	2.20-2.7 2.20-2.7	70		N = 20 (3, 4, 4, 5, 5, 6)	
3								97.87	3.7		AA227514	в	3.20-3.7	70		N = 31 (4, 5, 7, 8, 8, 8)	
4	Medium cobbles	dense bi	rown/grey	y sandy GF	RAVEL with ma						AA227515	В	4.20-4.7	70		N = 20 (3, 4, 4, 5, 5, 6)	
5						ę	8000 9000 9000 9000 9000 9000 9000 9000				AA227516	В	5.20-5.7	70		N = 28 (4, 5, 6, 7, 7, 8)	
6	End of B	orehole	at 6.00 m	1		5	0 <u>0 80</u>	95.57	6.0	0						N = 33 (5, 7, 7, 9, 10, 7)	
7																	
8																	
9																	
HA	RD STRA	-		ELLING									· · · ·		WA	TER STRIKE DET	AILS
ron	n (m) To		ime (h) C	omments			Wate Strike		asing epth	S	ealed At	Ris Tc		Fime min)	Co	omments	
															N	lo water strike	
														G	ROI	UNDWATER PRO	OGRES
INS	TALLATIO					_	Dat	e	Hole Depth		Casing Depth	De	pth to ater	Comm	nent	S	
	Date T -06-24	i <u>p Depth</u> 6.00	RZ Top 5.00	RZ Base 6.00	Type 50mm SP		25-06- 26-06-		5.00 6.00		5.00 Nil		4.80 5.80	End of 1 End of B		ý	
REI	MARKS C	AT scan Vater add	ned loca ded to dry	tion and ha / Gravel fro	and dug inspec om 3.70m.	tion p	it carried	out.	B - Bi LB - L	ulk Di: _arge	e Legene Disturbed (tub) sturbed Bulk Disturber	d	+ Vial + Tub)	Sai P -	mple Undis	isturbed 100mm Diameter turbed Piston Sample rr Sample	

REPORT NUMBER

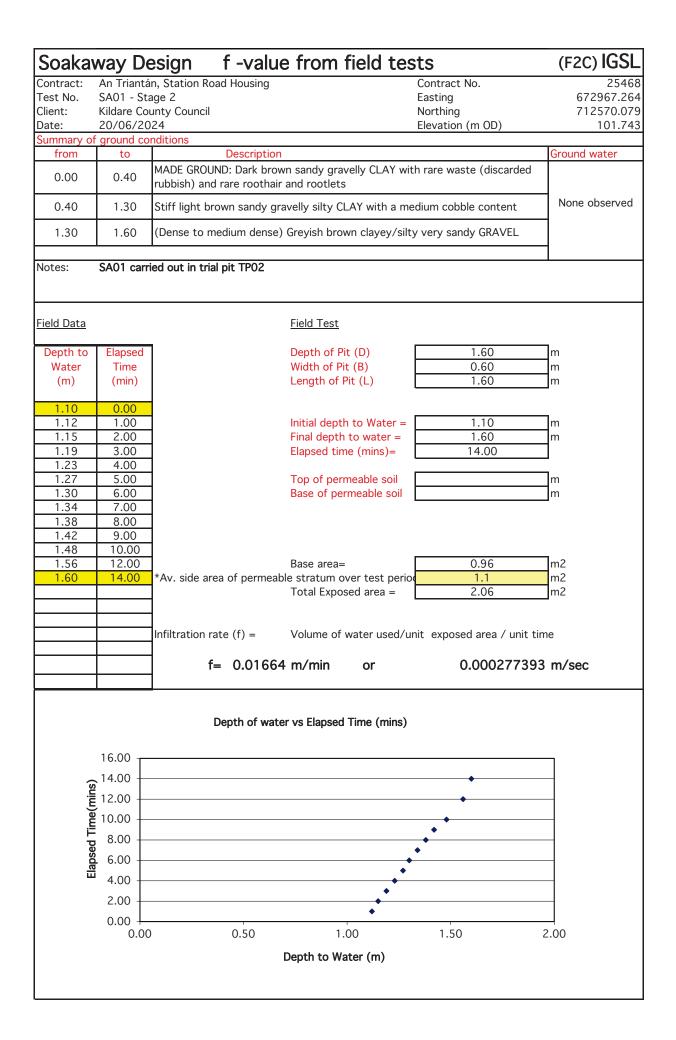
CO-	ORDIN	ATES	672,97	7.09 F						D	ando 15		SHEET		Sheet 1 of 1	
		EVEL (mC	712,58		E	BOREHO	LE DIAM LE DEPT		(mm)	2	00 .20				NCED 28/06/2024 TED 29/06/2024	
	ENT GINEER	Kilda Cund	re County all	Council			MER REI RATIO (%	-			0-10-1 0.5		BORED PROCES		R.Allan BY OK	
_									-	_		San	ples			0
Depth (m)			Desc	cription			Legend	i	Elevation	(III) IIIdan	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
0	TOPS	OIL					<u>x11, x11, x</u>		_					+		_
_	Firm li	ght brown	sandy slig	ghtly grave	lly SILT/CL	AY -	<u> </u>	101.0	05 0.0	65	AA227524 Env AA227525 Env	ENV	0.40-0.65 0.40-0.65 0.65-1.20 0.65-1.20	5		
1						-					AA227526 Env	B ENV	1.20-1.70 1.20-1.70)	N = 15 (2, 3, 3, 4, 4, 4)	
2 -	Stiff br	own slight	tly sandy s	slightly grav	velly CLAY	with -		99.6	0 2.	10	AA227527 Env	B ENV	2.20-2.70 2.20-2.70)	N = 17 (3, 3, 3, 4, 5, 5)	
3						-		-			AA227528	В	3.20-3.70)	N = 17 (2, 3, 4, 4, 4, 5)	
.4						-		97.5	0 4.3	20						
	Dense with a	brown/gro low cobble	ey clayey/s e content	silty very sa	andy GRAV						AA227529	В	4.20-4.70)	N = 21 (3, 4, 4, 5, 6, 6)	
5								3			AA227530	В	5.20-5.70)	N = 31 (4, 6, 7, 8, 8, 8)	
6	End of	Borehole	at 6.20 m	1				95.5	0 6.3	20					N = 33 (4, 5, 7, 8, 9, 9)	
7																
8																
9																
HA	RD STF	RATA BOF	ING/CHIS	ELLING											VATER STRIKE DE	TAILS
			Time C	omments			Wate		Casing	S	ealed	Ris		ime	Comments	-
4.		4.90	(h) 0.5				Strik		<u>Depth</u>		At	<u> </u>	(n	nin)	No water strike	
													I	G	ROUNDWATER PRO	OGRES
INS [.]	TALLAT		AILS				Dat	e	Hole Dept		Casing Depth	De	oth to ater	Comm	ents	
[Date	Tip Depth	RZ Top	RZ Base	Туре	9	28-06		4.00 6.20		4.00 Nil		Dry I	End of 1s End of Bł		
REN	MARKS			tion and ha Gravel fro	nd dug ins om 4.60m.	pection p	it carried	out.	B -	Bulk Di: • Large	e Legen Disturbed (tub) sturbed Bulk Disturbe	d	+ Vial + Tub)	San P - I	- Undisturbed 100mm Diameter nple Undisturbed Piston Sample Water Sample	


REPORT NUMBER

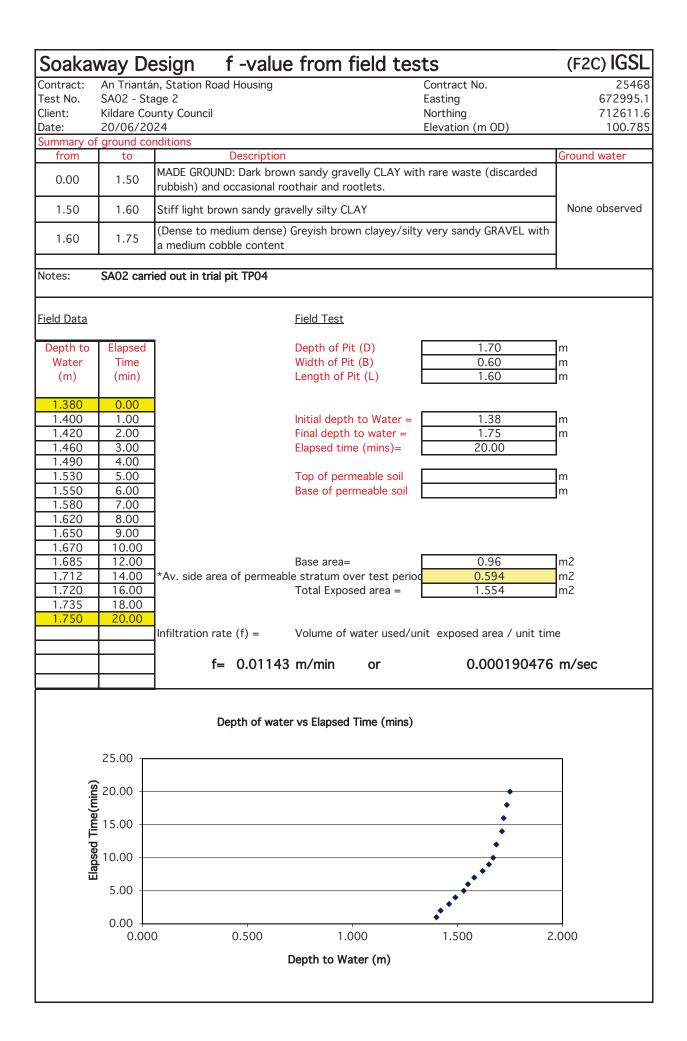
CO-	ORDIN	IATES	672,98	37.74 E		TYPE				Dando 15	50	SHEET			Sheet 1 of 1	
GR	OUND	LEVEL (m		55.73 N 102.14			e diam E dept		mm)	200 6.70					D 15/06/2024 D 20/06/2024	
	ENT GINEER		are County dall	Council			AER REI RATIO (9			10-10-1 70.5		BORED PROCE		BY	R.Allan OK	
											Sar	nples				0
Depth (m)			Des	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Becoverv	(Field Test Results	Standpipe
0	TOPS	SOIL				<u>7</u>	<u> </u>	3		<u> </u>				-		01
		ight brow	n slightly sa	andy slightly	gravelly		 	101.79	0.35	AA227501 Env AA227502 Env	ENV	0.20-0.3 0.20-0.3 0.35-1.2 0.35-1.2	15 20			
1	Brown	and arev	//brown ar	avelly SILT	with occasion		< <u> </u>	100.74	1.40	AA227503 Env	B ENV	1.20-1.7 1.20-1.7	70 70		N = 14 (4, 4, 4, 3, 4, 3)	
2	cobbl		, brown gr			xUx X X X X X X X X X X X X X X X X X X)×° × 3× [©] ×° ×° ×°			AA227504 Env	B ENV	2.20-2.7 2.20-2.7			N = 24 (4, 5, 5, 6, 6, 7)	
3	Mediu occas	im dense sional cob	brown/gre bles	y very sand	y GRAVEL w	ith 😪		98.64	3.50	AA227506	В	3.50-4.0	00		N = 29 (5, 6, 6, 6, 8, 9)	
5						\$ 0.0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.000000	0000			AA227507		4.20-4.7			N = 32 (7, 5, 8, 13, 1, 10) N = 28	
6							7-9- 7-80-		6.20	AA227508		6.20-6.7			(5, 6, 6, 7, 7, 8) N = 50/75 mm	
-		rown sligi	ntly sandy	slightly grav	elly SILT/CLA	4Y <u>></u> 	©	95.44	6.70			0.20-0.7			(25, 50) N = 50/75 mm	
7 8 9	End o	f Borehol	e at 6.70 n												(14, 11, 50)	
			Time				Wate	er C	asing	Sealed	Ris	e 1	Time		TER STRIKE DET	AILS
4.	n (m) 20 20	To (m) 4.80 6.70	0.45 1	omments			Strik		epth	At	To		min)	N	omments Io water strike	
									Hole	Casing	D-	oth to			UNDWATER PRO	GRES
-	TALLA Date	TION DET	TAILS th RZ Top	RZ Base	Туре		19-06 20-06	i-24	5.20 6.70	5.20 Nil	Ň	pth to ater 5.00 6.00	End of 2 End of 3	nd da	ay	
REMARKS CAT scanned location and hand dug inspection pit Water added from 3.50m in dry Gravel.					 t carried	l out.	B - Bul LB - La	Iple Legen all Disturbed (tub < Disturbed rge Bulk Disturbe nvironmental Sar	ed	+ Vial + Tub)	Sai P -	mple Undis	listurbed 100mm Diameter sturbed Piston Sample er Sample			

REPORT NUMBER

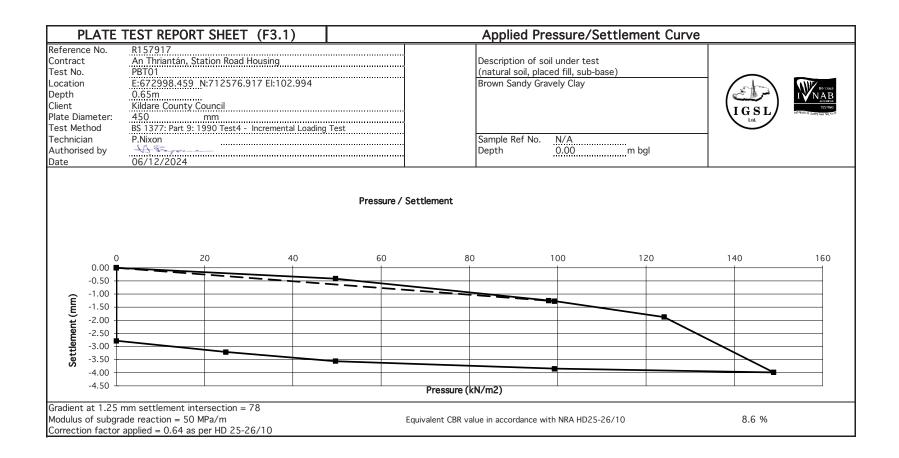
	NTRACT	An Triantár	n, Station Road H	-						BOREHO SHEET	JEE NU.	BH05 Sheet 1 of 1	
	ORDINAT		2,997.03 E 2,621.26 N 100.83		pe Iole Diam Iole Dept			Dando 15 200 5.40	50	DATE CO		CED 02/07/2024 ED 03/07/2024	
-	ENT GINEER	Kildare Co Cundall	unty Council	-	MMER RE	-		10-10-1 70.5		BORED PROCES		R.Allan 1 OK	
	•									nples			
Depth (m)		Ľ	Description		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
0	TOPSOI	-			<u> <u>1</u>, <u>1</u>, <u>1</u>, <u>1</u>, <u>1</u>, <u>1</u>, <u>1</u>, <u>1</u></u>								
1	Firm light brown sandy slightly gravelly SILT/CLAY					100.33	0.50	AA227531 AA227531		0.50-1.20 0.50-1.20			
						98.93	1.90	AA227532 AA227532		1.20-1.70 1.20-1.70		N = 15 (3, 4, 3, 4, 4, 4)	0 0
2	Stiff brow occasion	n slightly san al cobbles	dy slightly gravell	y CLAY with				AA227533 AA227533	B ENV	2.20-2.70 2.20-2.70		N = 19 (3, 3, 4, 5, 5, 5)	0 0
;								AA227534 AA227534		3.20-3.70 3.20-3.70		N = 25 (4, 5, 5, 6, 7, 7)	0 0 0
		dense brown/ al cobbles	grey sandy GRAV	/EL with		96.33	4.50		Б	4.50-5.00		N = 30 (3, 4, 6, 8, 8, 8)	0
5		prehole at 5.4	40 m			95.43	5.40		в	5.40		N = 28 (5, 6, 8, 7, 7, 6) N = 50/150 mm (12, 15, 17, 33)	0
7													
		TA BORING/C			Wate	er Ca	sing	Sealed	Ris	e Ti	me	ATER STRIKE DE	TAILS
	n (m) To 00 5.4	(^{m)} (h)	Comments		Strik		pth	0			nin)	Comments No water strike	
							L	I			GR	OUNDWATER PRO	OGRE
INSTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type 03-07-24 5.40 1.00 5.40 50mm SP					02-07	le	Hole Depth 5.40	Casing Depth Nil	Ŵ	aler	Commei End of BH0		
EN	W	ater was add	ocation and hand led from 4.0m. La g progress in bore	rge boulder en	countered	at	D - Sma B - Bulk LB - Lar	I Disturbed (tub) Disturbed ge Bulk Disturbe vvironmental Sar) ed	.)((a) . Tub)	Sampl P - Un	Indisturbed 100mm Diameter le disturbed Piston Sample ater Sample	

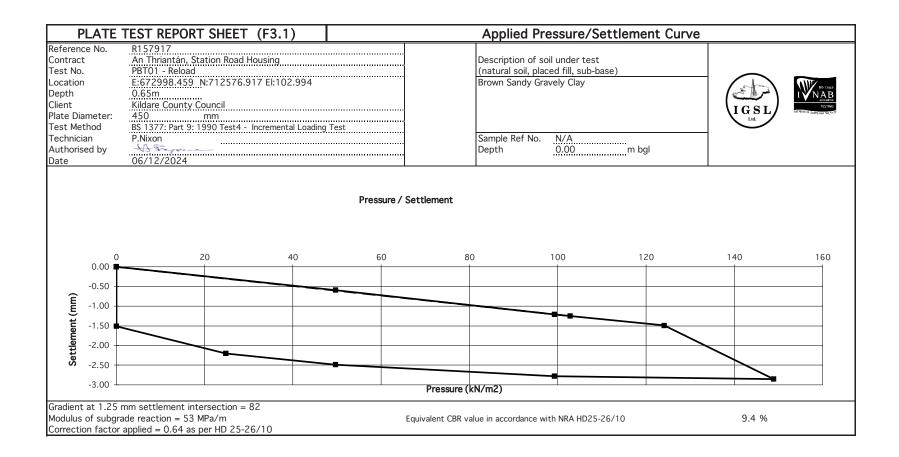


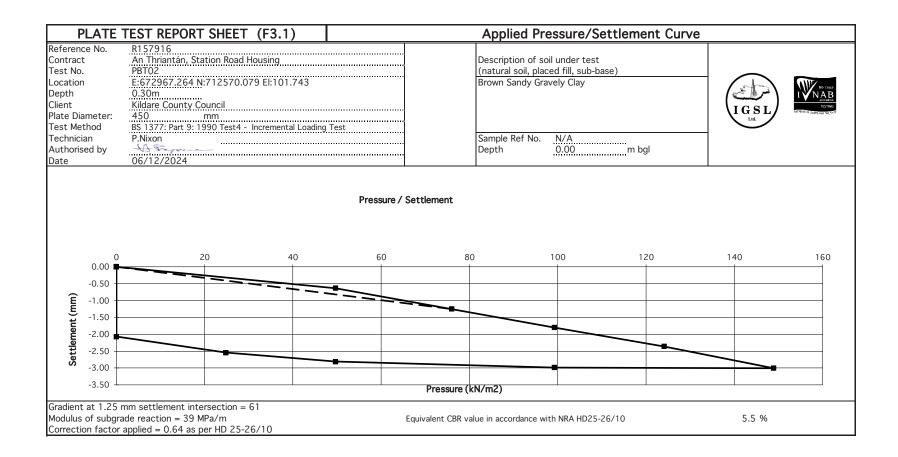
© Copyright 2024 **Equipe Group**, The Paddocks, Home Farm Offices, The Upton Estate, Banbury, Oxfordshire, OX15 6HU Tel: +44 (0)1295 670990 Fax: +44 (0)1295 678232 Email: info@equipegroup.com

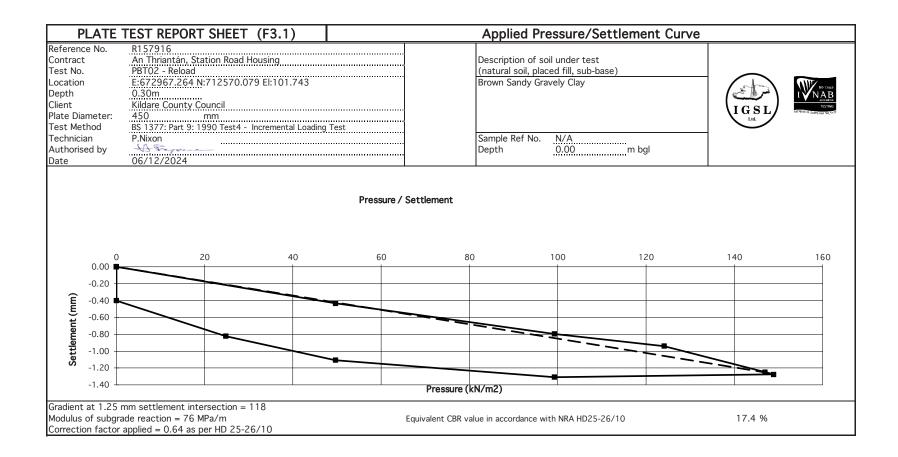

Soakaway Test Records

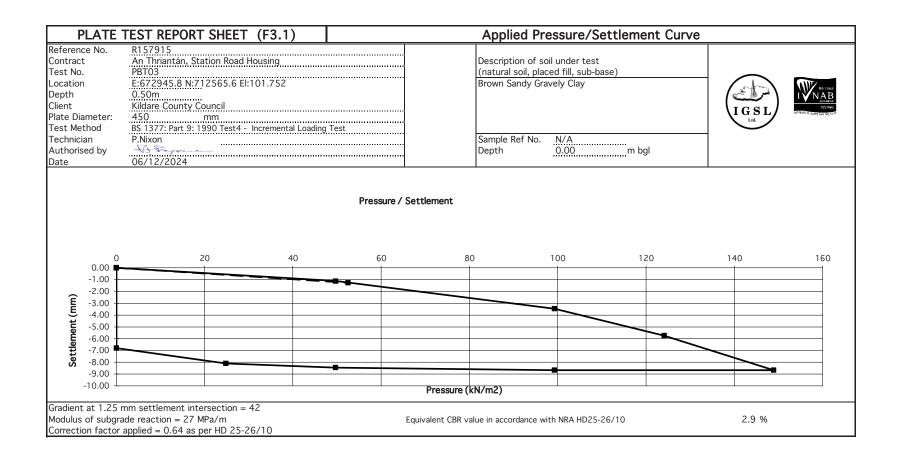
Soakav	way De	əsign f-v	value from	field tes	sts	(F2C) IGSL
Contract: Test No. Client: Date:	SA01 - Sta Kildare Cor 20/06/20	unty Council)24	sing		Contract No. Easting Northing Elevation (m OD)	25468 672967.264 712570.079 101.743
Summary of from	f ground co to		ription			Ground water
0.00	0.40	Ī	rk brown sandy grav		h rare waste (discarded	
0.40	1.30	Stiff light brown sa	ndy gravelly silty Cl	LAY with a me	dium cobble content	None observed
1.30	1.60	(Dense to medium	dense) Greyish brov	wn clayey/silty	y very sandy GRAVEL	
Notes:	SA01 carri	ied out in trial pit TP	02			
<u>Field Data</u>			Field Test			
Depth to Water (m)	Elapsed Time (min)]	Depth of Pi Width of Pi Length of F	t (B)	1.60 0.60 1.60	m m m
(11) 1.20 1.30 1.42 1.53 1.60	0.00 1.00 2.00 3.00 4.00		Initial depth Final depth Elapsed tim Top of perr	h to Water = to water = ne (mins)= meable soil rmeable soil	1.20 1.60 4.00	m m m
		*Av. side area of pe		ver test perio		m2 m2
		Infiltration rate (f) =	= Volume of	water used/ur	nit exposed area / unit	time
		f= 0.0)5217 m/min	or	0.00086956	65 m/sec
		Depth o	of water vs Elapsed	Time (mins)		
Elapsed Time(mins)	4.50 4.00 3.50 2.50 2.00 1.50 1.00 0.50 0.00) 0.50	0 1. Depth to Wa	00 ater (m)	• • 1.50	2.00

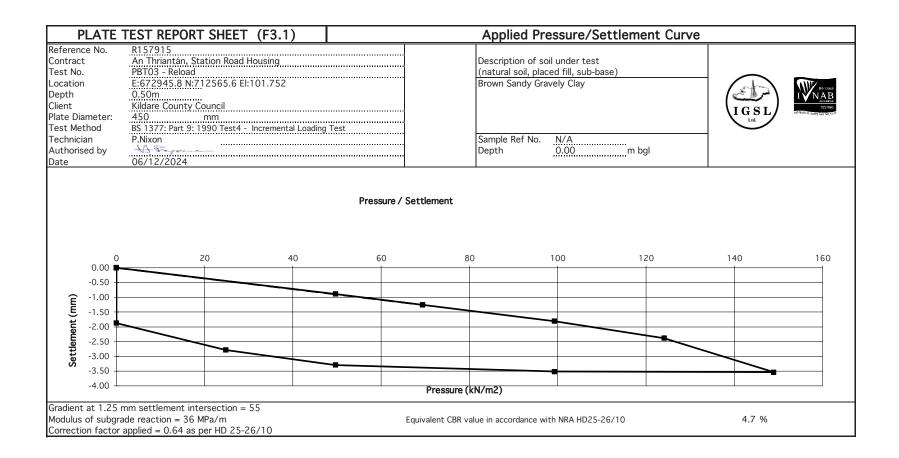

Soakav	way De	esign f-valu	e from field [.]	tests	(F2C) IGSL
Contract: Test No. Client: Date:	SA01 - Sta Kildare Cor 20/06/20	unty Council 124		Contract No. Easting Northing Elevation (m OD)	25468 672967.264 712570.079 101.743
Summary of from	ground co to	nditions Description	1		Ground water
0.00	0.40	Î.	wn sandy gravelly CLA	Y with rare waste (discarded	
0.40	1.30	Stiff light brown sandy g	ravelly silty CLAY with	a medium cobble content	None observed
1.30	1.60	(Dense to medium dense) Greyish brown clayey	//silty very sandy GRAVEL	
Notes:	SA01 carr	ied out in trial pit TPO2			
<u>Field Data</u>			Field Test		
Depth to	Elapsed	1	Depth of Pit (D)	1.60	m
Water	Time		Width of Pit (B)	0.60	m
(m)	(min)		Length of Pit (L)	1.60	m
1.05	0.00				_
1.11	1.00]	Initial depth to Wate		m
1.18	2.00	-	Final depth to water		m
1.24 1.27	3.00 4.00	-	Elapsed time (mins)	= 17.00	_
1.32	5.00	-	Top of permeable so	bil	m
1.35	6.00		Base of permeable s		m
1.37	7.00				_
1.41	8.00	-			
1.43 1.45	9.00 10.00	-			
1.49	12.00	-	Base area=	0.96	m2
1.54	14.00	*Av. side area of permea			m2
1.60	17.00		Total Exposed area	= 2.17	m2
		Infiltration rate (f) =	Volume of water use	ed/unit exposed area / unit tir	ne
		f= 0.0143	1 m/min or	0.000238547	′ m/sec
		Depth of wat	er vs Elapsed Time (m	ins)	
	18.00			•	
ins	14.00 —			•	_
e(L	12.00			•	_
<u> </u>	10.00 —			•	
Elabsed Time(mins)	8.00 -			•	_
	6.00 -				
l ä	4.00			•	
	2.00			•	
			*		
	→ 0.00 0.00	0.50	1.00	1.50	2.00
	0.00	0.00	Depth to Water (m)		

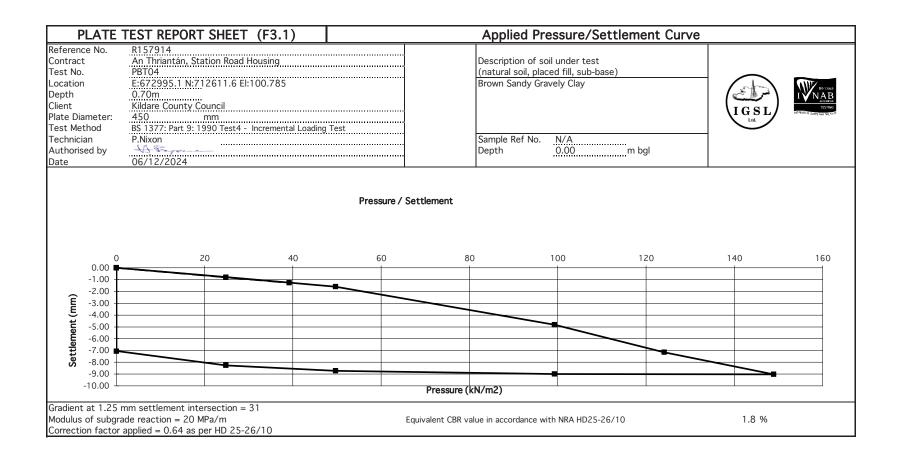

Soaka	way De	esign f	-value	from t	field tes	sts	(F2C) IGSL
Contract:		n, Station Road	Housing			Contract No.	25468
Test No.	SA02 - Sta					Easting	672995.1
Client:	20/06/20	unty Council				Northing	712611.6 100.785
Date: Summary of						Elevation (m OD)	100.785
from	to	i -	Description				Ground water
0.00	1.50	MADE GROUND: rubbish) and oc				h rare waste (discarded	
1.50	1.60	Stiff light brow	n sandy grav	elly silty CL	AY		None observed
1.60	1.75	(Dense to medi a medium cobb		Greyish brov	vn clayey/silt	y very sandy GRAVEL wit	h
Notes:	SA02 carr	ied out in trial pi	t TP04				
<u>Field Data</u>				<u>Field Test</u>			
Depth to	Elapsed	1		Depth of Pi	t (D)	1.75	m
Water	Time			Width of Pit		0.60	m
(m)	(min)			Length of P		1.60	m
1.40	0.00					1.10	_
1.40	1.00	-			to Water =	1.40	m
1.45 1.49	2.00 3.00	-		Final depth Elapsed tim		<u> </u>	m
1.54	4.00	-			e (mins)-	10.00	
1.59	5.00	1		Top of pern	neable soil		m
1.64	6.00	1		Base of per			m
1.68	7.00						
1.70	8.00						
1.72	9.00						
1.73 1.73	10.00 12.00	-		Base area=		0.96	m2
1.73	14.00	*Av. side area o	of nermeable		ver test nerio		m2
1.75	16.00		permeasi	Total Expos		1.73	m2
		Infiltration rate	(f) =	Volume of v	water used/u	nit exposed area / unit t	ime
			0.01214			0.00020231	
		1=	0.01214		or	0.00020231	
		Dep	oth of water	vs Elapsed	Time (mins)		
	18.00 -						
(5	16.00 —					•	
Elabsed Time(mins)	14.00 —					•	
l)e(12.00 —					•	
	10.00 —					•	
ed .	8.00 -					•	
sde	6.00 -					•	
						• •	
	4.00					•	
	2.00 —					•	
	→ 0.00 0.00)	0.50	1.(00	1.50	2.00
	0.00	,				1.50	2.00
			C	epth to Wa	ter (m)		

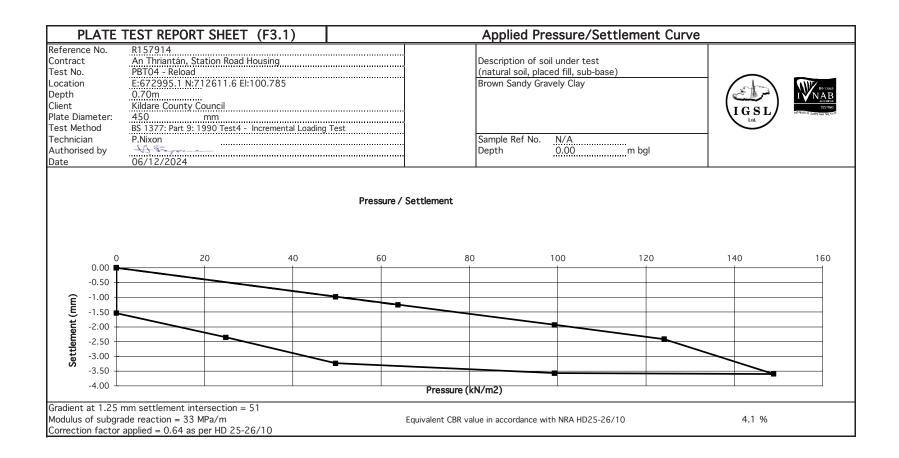



Soaka	way De	esign f	⁻ -value	from	field te	sts		(F2C) IGSL
Contract: Test No.	SA02 - Sta	-	Housing			Contract No. Easting		25468 672995.1
Client: Date:	Kildare Co 20/06/20	unty Council				Northing Elevation (m OD)		712611.6 100.785
Summary of								100.703
from	to	[Description				G	round water
0.00	1.50	MADE GROUND rubbish) and or				th rare waste (disca	rded	
1.50	1.60	Stiff light brow	n sandy gra	velly silty Cl	_AY			None observed
1.60	1.75	(Dense to med a medium cobb		Greyish brov	vn clayey/silt	y very sandy GRAV	EL with	
Notes:	SA02 carr	ied out in trial p	it TPO4					
<u>Field Data</u>				Field Test				
Depth to	Elapsed	1		Depth of Pi	t (D)	1.70	n	า
Water	Time			Width of Pi	t (B)	0.60	n	
(m)	(min)			Length of F		1.60	n	
1.340	0.00							
1.370	1.00	1		Initial depth	n to Water =	1.34	n	า
1.400	2.00			Final depth	to water =	1.75	n	า
1.450	3.00			Elapsed tim	ie (mins)=	19.00		
1.470	4.00							
1.490	5.00	1		Top of perr			n	
1.520	6.00	1		Base of per	meable soil		n	า
1.540	7.00	4						
1.570	8.00	-						
1.605	9.00	-						
1.620 1.655	10.00 12.00	4		Base area=		0.96		12
1.700	14.00	*Av. side area	of normochl		ver test neric			12 12
1.715	16.00	AV. Side alea	or permean	Total Expos		1.642		12
1.740	18.00					1.042	''	
1.750	19.00							
		Infiltration rate	(f) =	Volume of	water used/u	nit exposed area /	unit time	
		f=	0.01262	m/min	or	0.0002	21027 r	n/sec
	I	<u>]</u> Dej	oth of wate	vs Elapsed	Time (mins)			
	20.00					•		
<u></u>	18.00 +					•		
Flansed Time(minc)	16.00 -					•		
, u	14.00					•		
i,	12.00 —					•		
	10.00 —					•		
ast	8.00 –					•		
	6.00					•		
	4.00 -					••••••••••••••••••••••••••••••••••••••		
	2.00 -					•		
	0.00				1	•		
	0.00	0	0.500	1.0	000	1.500	2.0	00
			[Depth to Wa	iter (m)			


Plate Bearing Test Records







Groundwater Monitoring

Project No. 25468		GROUNDWATER MONITORING DATA SHEET								
Project: An Triar Engineer: Cunda		ad Housing								
Exploratory Hole No.	Hole Depth (m bgl)	Response Zone Top (m bgl)	Response Zone Base (m bgl)	Groundwater level (m bgl) (11/09/24)	Groundwater level (m bgl)	Groundwater level (m bgl)	Groundwater level (m bgl)	Comments		
BH02	6.00	5.00	6.00	Dry						
BH05	5.40	1.00	5.40	3.80						
Remarks:		ared using electric dipme e percussion borehole v core drillhole	ter							

Geotechnical Laboratory Results (Soil)

GSL Ltd Vaterials Lat							Т	est Rep	oort					ISO 17025
Jnit J5, M7 E Newhall, Naa	Business Park				Dete	rmination	of Moist	ure Conte	ent, Liqui	d & Plasti	ic Limits			
Co. Kildare	45									0.0.4		* *		TESTING
045 846176					l ested in	accordance	e with BS1	377:Part 2:	1990, clau	ses 3.2, 4.	3, 4.4 & 5.3	3^^		GETAILED /N SCOPE REG NO.1331
	Report No.	R159645		Contract	No.	25468		Contract N	lame:	An Trianta	In Housing	Developm	ent Kildare	
	Customer	Kildare Co.Co	. / Cundell											
	Samples Re	ceived:	24/07/24	Date Tes	sted:	24/07/24								
BH/TP*	Sample No.	Depth* (m)	Lab. Ref	Sample Type*	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425μm	Preparation	Liquid Limit Clause	Classification (BS5930)	Description	
BH01	AA227519	1.2	A24/3353	В	12	24	NP	NP	66	WS	4.4		Brown sandy gravelly S	SILT
BH02	AA227512	1.2	A24/3358	В	13	31	17	14	69	WS	4.4	CL	Brown sandy gravelly (CLAY
BH02	AA227514	3.2	A24/3359	В	13	26	14	12	69	WS	4.4	CL	Brown sandy gravelly (CLAY
BH03	AA227527	2.2	A24/3356	В					Brown slightly sandy, s	ndy, slightly gravelly, CLAY				
BH04	AA227504	2.2	A24/3361	В	10	28	NP	NP	58	WS	4.4		Brown sandy gravelly	SILT
BH05	AA227533	2.3	A24/3364	В	13	27	14	13	67	WS	4.4	CL	Brown slightly sandy, s	lightly gravelly, CLAY
TP01	AA229996	1.5	A24/3366	В	35	54	NP	NP	57	WS	4.4		Brown sandy gravelly \$	SILT
TP03	AA229999	1.4	A24/3369	В	13	27	15	12	68	WS	4.4	CL	Brown sandy gravelly (CLAY
	Preparation:	WS - Wet sieved AR - As received		<u> </u>	Sample Type:	B - Bulk Distu U - Undisturbe		Remarks:					the main and a d	
		NP - Non plastic				U - Undisturb	ea			cimen tested,in been superced				
	Liquid Limit Clause:	4.3 Cone Penetro 4.4 Cone Penetro						-					es Customer supplied ir m the Laboratory.	nformation.
			la a vata v		Persons autho	rized to approv	ve reports			Approved	by		Date	Page
IC	35L LTO M	aterials La	poratory			H Byrne (L	aboratory I	Manager)		ABy.	sur-		28/08/24	1 of 1

			TEST REPORT ermination of Particle Size Distribution accordance with: BS1377:Part2:1990, clause 9.2 & 9.5** (note: Sedimentation stage not accredited)
particle	%		Contract No. 25468 Report No. R160547
size	passing		Contract Name : An Triantan Housing Development Kildare Results relate only to the specimen tested in as received
75	100	COBBLES	BH/TP No. BH01 condition unless otherwise noted. * denotes Customer
63	100	OODDEEC	Sample No.* AA227521 Lab. Sample No. A24/3354 supplied information. Opinions and interpretations are
50	100		Sample Type: B outside the scope of accreditation.
37.5	100		Depth* (m) 3.20 Customer: Kildare Co.Co. / Cundell This report shall not be reproduced except in full without
28	96		Date Received 24/07/2024 Date Testing started 24/07/2024 the written approval of the Laboratory.
20	96		Description: Brown slightly sandy, slightly gravelly, SILT/CLAY
14	94	GRAVEL	
10	91	GIUTULL	Remarks Note: **Clause 9.2 and Clause 9.5 of BS1377:Part 2:1990 have been superseded by ISO17892-4:2016.
6.3	87		0.063 0.15 0.15 0.15 0.425 0.6 0.425 0.6 0.425 0.6 11 14 11 14 12 22 23 37.5 53 37.5 53 65 37.5
5	86		
3.35	84		
2	81		90
1.18	78		
0.6	73		Percentage passing (%) 60 40 30
0.425	71	SAND	
0.3	69		
0.15	60		
0.063	50		
0.038	43		
0.027	39		
0.017	34	SILT/CLAY	
0.010	31		
0.007	26		0.0001 0.001 0.01 0.1 1 10 100
0.005	22		CLAY SILT Sieve size (mm) SAND GRAVEL
0.002	12		
		IGSL I t	d Materials Laboratory
			O Materials Laboratory Image: Margin Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)

			TEST REPORT ermination of Particle Size Distribution accordance with: BS1377:Part2:1990, clause 9.2 & 9.5** (note: Sedimentation stage not accredited)
particle	%		Contract No. 25468 Report No. R159646
size	passing		Contract Name : An Triantan Housing Development Kildare Results relate only to the specimen tested in as received
75	100	COBBLES	BH/TP No. BH01 condition unless otherwise noted. * denotes Customer
63	76	000002200	Sample No.* AA227523 Lab. Sample No. A24/3355 supplied information. Opinions and interpretations are
50	76		Sample Type: B outside the scope of accreditation.
37.5	67		Depth* (m) 5.20 Customer: Kildare Co.Co. / Cundell This report shall not be reproduced except in full without
28	64		Date Received 24/07/2024 Date Testing started 24/07/2024 the written approval of the Laboratory.
20	59		Description: Brown slightly clayey/silty, very sandy, GRAVEL with many cobbles
14	55	GRAVEL	
10	50	GIUTULL	Remarks Note: **Clause 9.2 and Clause 9.5 of BS1377:Part 2:1990 have been superseded by ISO17892-4:2016. Sample size did not meet the requirements of I
6.3	43).063 0.15 0.15 0.15 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
5	39		
3.35	32		
2	26		90
1.18	20		
0.6	12		
0.425	8	SAND	
0.3	5		Percentage passing (%) 70 60 60 60 60 60 60 60 60 60 60 60 60 60
0.15	3		
0.063	2		
		SILT/CLAY	
			0.0001 0.001 0.01 0.1 1 10 100
			CLAY SILT Sieve size (mm) SAND GRAVEL
			Approved by: Date: Page no:
		IGSL Lt	d Materials Laboratory 4 Byan 28/08/24 1 of 1
			Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manag

	TEST REPORT Determination of Particle Size Distribution Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** Image: Sedimentation stage not accredited)						
particle	%		Contract No. 25468 Report No. R159647				
size	passing		Contract Name : An Triantan Housing Development Kildare Results relate only to the specimen tested in as received				
75	100	COBBLES	BH/TP No. BH02 condition unless otherwise noted. * denotes Customer				
63	100	OODDELLO	Sample No.* AA227514 Lab. Sample No. A24/3359 supplied information. Opinions and interpretations are				
50	100		Sample Type: B outside the scope of accreditation.				
37.5	100		Depth* (m) 3.20 Customer: Kildare Co.Co. / Cundell This report shall not be reproduced except in full without				
28	98		Date Received 24/07/2024 Date Testing started 24/07/2024 the written approval of the Laboratory.				
20	95		Description: Brown slightly sandy, slightly gravelly, SILT/CLAY				
14	92	GRAVEL					
10	89	GIUTULL	Remarks Note: **Clause 9.2 and Clause 9.5 of BS1377:Part 2:1990 have been superseded by ISO17892-4:2016.				
6.3	85		0.063 0.063 0.15 0.15 0.15 0.425 0.0.6 0.425 0.0.6 0.425 0.0.6 0.1118 1.18 1.18 1.18 1.18 1.18 1.18 1.				
5	84						
3.35	81						
2	78		90				
1.18	75						
0.6	71						
0.425	69	SAND					
0.3	66						
0.15	59		Bercentage passing (%) 70				
0.063	51		§ 30				
		SILT/CLAY					
			CLAY SILT Sieve size (mm) SAND GRAVEL				
			Approved by: Date: Page no:				
		IGSL Lt	d Materials Laboratory 28/08/24 1 of 1				
			Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)				

	TEST REPORT Determination of Particle Size Distribution Determination of Particle Size Distribution Determination stage not accredited) Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** ESTING (note: Sedimentation stage not accredited) Determination (135)						
particle	%		Contract No. 25468 Report No. R159648				
size	passing		Contract Name : An Triantan Housing Development Kildare Results relate only to the specimen tested in as received				
75	61	COBBLES	BH/TP No. BH02 condition unless otherwise noted. * denotes Customer				
63	61	COBBLES	Sample No.* AA227516 Lab. Sample No. A24/3360 supplied information. Opinions and interpretations are				
50	55		Sample Type: B outside the scope of accreditation.				
37.5	49		Depth* (m) 5.20 Customer: Kildare Co.Co. / Cundell This report shall not be reproduced except in full without				
28	43		Date Received 24/07/2024 Date Testing started 24/07/2024 the written approval of the Laboratory.				
20	41		Description: Grey sandy, GRAVEL with many cobbles				
14	36	GRAVEL					
10	33	UNAVEL	Remarks Note: ** Clause 9.2 and Clause 9.5 of BS1377: Part 2:1990 have been superseded by ISO17892-4:2016 . Sample size did not meet the requirements of BS137				
6.3	26						
5	22		0.063 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.66 0.425 0.66 0.425 0.66 0.425 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.6				
3.35	18						
2	12		90				
1.18	8						
0.6	4						
0.425	3	SAND					
0.3	2						
0.15	1		Bercentage passing (%) 70 60 40 30 				
0.063	0						
		SILT/CLAY					
			0.0001 0.001 0.01 0.1 1 10 100				
			CLAY SILT Sieve size (mm) SAND GRAVEL				
			Approved by: Date: Page no:				
		IGSL Lt	d Materials Laboratory 28/08/24 1 of 1				
	Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)						

	TEST REPORT Determination of Particle Size Distribution Tested in accordance with: BS1377:Part2:1990, clause 9.2 & 9.5** Iso 17025 (note: Sedimentation stage not accredited) TESTNE						
particle	%		Contract No. 25468 Report No. R159649				
size	passing		Contract Name : An Triantan Housing Development Kildare Results relate only to the specimen tested in as received				
75	100	COBBLES	BH/TP No. BH03 condition unless otherwise noted. * denotes Customer				
63	100	OODDEEC	Sample No.* AA227527 Lab. Sample No. A24/3356 supplied information. Opinions and interpretations are				
50	100		Sample Type: B outside the scope of accreditation.				
37.5	95		Depth* (m) 2.20 Customer: Kildare Co.Co. / Cundell This report shall not be reproduced except in full without				
28	95		Date Received 24/07/2024 Date Testing started 24/07/2024 the written approval of the Laboratory.				
20	91		Description: Brown slightly sandy, slightly gravelly, CLAY				
14	88	GRAVEL					
10	86	GIUTVEE	Remarks Note: **Clause 9.2 and Clause 9.5 of BS1377:Part 2:1990 have been superseded by ISO17892-4:2016.				
6.3	83		0.063 0.15 0.15 0.15 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.6 114 114 114 110 110 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.				
5	81						
3.35	79						
2	76		90				
1.18	74						
0.6	70						
0.425	69	SAND					
0.3	67		(%) 70 60 60 50 60 40 60 30 60				
0.15	61						
0.063	52						
0.038	43						
0.027	40	SILT/CLAY					
0.017	36						
0.010	33						
0.007	28		0.0001 0.001 0.01 0.1 1 10 100				
0.005	24		CLAY SILT Sieve size (mm) SAND GRAVEL				
0.002							
		IGSL 1 t	d Materials Laboratory				
			O Materials Laboratory Image: Marganetic Science				

	TEST REPORT Determination of Particle Size Distribution Determination of Particle Size Distribution Determination stage not accredited) Tested in accordance with: BS1377:Part2:1990, clause 9.2 & 9.5** Tested in accordance with: BS1377:Part2:1990, clause 9.2 & 9.5** (note: Sedimentation stage not accredited) Determination stage not accredited						
particle	%		Contract No. 25468 Report No. R160546				
size	passing		Contract Name : An Triantan Housing Development Kildare Results relate only to the specimen tested in as received				
75	100	COBBLES	BH/TP No. BH03 condition unless otherwise noted. * denotes Customer				
63	100		Sample No.* AA227529 Lab. Sample No. A24/3357 supplied information. Opinions and interpretations are				
50	86		Sample Type: B outside the scope of accreditation.				
37.5	86		Depth* (m) 4.20 Customer: Kildare Co.Co. / Cundell This report shall not be reproduced except in full without				
28	86		Date Received 24/07/2024 Date Testing started 24/07/2024 the written approval of the Laboratory.				
20	83		Description: Brown clayey/silty, very sandy, GRAVEL				
14	79	GRAVEL					
10	74		Remarks Note: **Clause 9.2 and Clause 9.5 of BS1377:Part 2:1990 have been superseded by ISO17892-4:2016 . Sample size did not meet the requirements of BS1				
6.3	67		0.063 0.15 0.425 0.425 0.6 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.				
5	63		ິສິນິສິສິມິສິ÷∓ິຍິນ ສິນ −ິວິວິວິວີວິວິວິດີ 100				
3.35	59						
2	53						
1.18	48						
0.6	41						
0.425	38	SAND					
0.3	33		Bercentage passing (%) 70 60 60 60 60 60 60 60 60 60 60 60 60 60				
0.15	20						
0.063	8						
		SILT/CLAY					
			0 1 0.001 0.01 0.1 1 10 100				
			CLAY SILT Sieve size (mm) SAND GRAVEL				
			Approved by: Date: Page no:				
		IGSL LT	d Materials Laboratory 28/08/24 1 of 1				
	Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)						

particle % Contract No. 25468 Report No. R159650			TE		
size passing Contract Name : An Triantan Housing Development Ki	ildare	Results relate only to the specim	en tested in as received		
75 100 BH/TP No. BH04		condition unless otherwise noted	. * denotes Customer		
63 100 Sample No.* AA227507 Lab. Sample No.	A24/3362	supplied information. Opinions a	nd interpretations are		
50 100 Sample Type: B		outside the scope of accreditatio	n.		
37.597Depth* (m)4.20Customer: Kildare Co.0	Co. / Cundell	This report shall not be reproduc	ed except in full without		
28 87 Date Received 24/07/2024 Date Testing started	24/07/2024	the written approval of the Labor	atory.		
20 82 Description: Grey very sandy, GRAVEL					
14 77 GRAVEL					
10 70 Remarks Note: **Clause 9.2 and Clause 9.5 of BS1377:Part 2:1990 have	e been superseded by ISO	17892-4:2016 .			
6.3 55 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	0.3 0.425 0.6 1.18	2 55 6.3 110 20	0 2 2 2		
100	0.7 0.7	ου ου ου ου ου ου			
3.35 35					
2 21 90					
0.425 4 SAND 5 60					
0.6 0.425 4 0.3 0.15 1 0.063 0 0 0 0 0 0 0 0 0 0 0 0 0		+ + + + + + + + + + + + + + + + + + +			
		/			
SILT/CLAY					
	1	10	100		
CLAY SILT Sieve size (mm) SAND GRAVEL					
Approved by		Date:	Page no:		
IGSL Ltd Materials Laboratory	<i>i</i>	28/08/24	1 of 1		

	TEST REPORT Determination of Particle Size Distribution Tested in accordance with: BS1377:Part2:1990, clause 9.2 & 9.5** Image: Clause of the sedimentation stage not accredited)						
particle	%		Contract No. 25468 Report No. R160545				
size	passing		Contract Name : An Triantan Housing Development Kildare Results relate only to the specimen tested in as received				
75	100	COBBLES	BH/TP No. BH04 condition unless otherwise noted. * denotes Customer				
63	100	OODBELLO	Sample No.* AA227509 Lab. Sample No. A24/3363 supplied information. Opinions and interpretations are				
50	100		Sample Type: B outside the scope of accreditation.				
37.5	95		Depth* (m) 6.20 Customer: Kildare Co.Co. / Cundell This report shall not be reproduced except in full without				
28	95		Date Received 24/07/2024 Date Testing started 24/07/2024 the written approval of the Laboratory.				
20	92		Description: Brown slightly sandy, slightly gravelly, SILT/CLAY				
14	88	GRAVEL					
10	86	GIUTVEE	Remarks Note: **Clause 9.2 and Clause 9.5 of BS1377:Part 2:1990 have been superseded by ISO17892-4:2016.				
6.3	83		0.15 0.15 0.15 0.15 0.15 0.15 0.12 0.6 0.6 0.6 1.14 1.18 1.18 1.18 1.18 1.18 1.18 1.18				
5	81						
3.35	79						
2	76		90				
1.18	74						
0.6	71						
0.425	69	SAND	(%) 70 60 60 50 60 40 60 30 60				
0.3	67						
0.15	61						
0.063	52						
0.038	43						
0.027	40						
0.017	36	SILT/CLAY					
0.010	33						
0.007	28		0.0001 0.001 0.01 0.1 1 10 100				
0.005	24		CLAY SILT Sieve size (mm) SAND GRAVEL				
0.002	0.002 14						
		IGSL I t	d Materials Laboratory				
			O Materials Laboratory Image: Marganetic state 28/08/24 1 of 1 Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)				

	TEST REPORT Determination of Particle Size Distribution Determination of Particle Size Distribution Determination of Particle Size Distribution Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** TESTING (note: Sedimentation stage not accredited) Determination stage not accredited						
particle	%		Contract No. 25468 Report No. R159651				
size	passing		Contract Name : An Triantan Housing Development Kildare Results relate only to the specimen tested in as received				
75	100	COBBLES	BH/TP No. BH05 condition unless otherwise noted. * denotes Customer				
63	100	OODDLLO	Sample No.* AA227533 Lab. Sample No. A24/3364 supplied information. Opinions and interpretations are				
50	100		Sample Type: B outside the scope of accreditation.				
37.5	100		Depth* (m) 2.20 Customer: Kildare Co.Co. / Cundell This report shall not be reproduced except in full without				
28	100		Date Received 24/07/2024 Date Testing started 24/07/2024 the written approval of the Laboratory.				
20	96		Description: Brown slightly sandy, slightly gravelly, CLAY				
14	94	GRAVEL					
10	91	GIUTEL	Remarks Note: **Clause 9.2 and Clause 9.5 of BS1377:Part 2:1990 have been superseded by ISO17892-4:2016.				
6.3	86		0.063 0.15 0.15 0.15 0.425 0.6 0.425 0.6 0.425 0.6 11 11 11 11 11 11 12 22 0.6 53 37.5 55 37.5 55 37.5				
5	85						
3.35	82						
2	79		90				
1.18	76						
0.6	71						
0.425	69	SAND	Percentage passing (%) 60 40 30 40 40 50 50 50 50 50 50 50 50 50 5				
0.3	66						
0.15	59						
0.063	51						
0.039	47						
0.028	43	SILT/CLAY					
0.018	39						
0.010	34						
0.007	30		0.0001 0.001 0.01 0.1 1 10 100				
0.005	24		CLAY SILT Sieve size (mm) SAND GRAVEL				
0.002	0.002 14						
		IGSL I t	d Materials Laboratory Approved by: Date: Page no:				
			C Materials Laboratory A Byenn 28/08/24 1 of 1 Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)				

	TEST REPORT Determination of Particle Size Distribution Determination of Particle Size Distribution Determination stage not accredited) Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** Context Cont						
particle	%		Contract No. 25468 Report No. R160549				
size	passing		Contract Name : An Triantan Housing Development Kildare Results relate only to the specimen tested in as received				
75	100	COBBLES	BH/TP No. BH05 condition unless otherwise noted. * denotes Customer				
63	100		Sample No.* AA227536 Lab. Sample No. A24/3365 supplied information. Opinions and interpretations are				
50	88		Sample Type: B outside the scope of accreditation.				
37.5	88		Depth* (m) 5.50 Customer: Kildare Co.Co. / Cundell This report shall not be reproduced except in full without				
28	82		Date Received 24/07/2024 Date Testing started 24/07/2024 the written approval of the Laboratory.				
20	80		Description: Brown sandy, GRAVEL				
14	74	GRAVEL					
10	66		Remarks Note: **Clause 9.2 and Clause 9.5 of BS1377:Part 2:1990 have been superseded by ISO17892-4:2016. Sample size did not meet the requirements of BS137				
6.3	52		0.063 0.15 0.15 0.15 0.425 0.0 0.425 0.0 11 14 11 14 12 10 11 14 12 10 16 33 7.5 53 7.5 63 37.5				
5	44						
3.35	32						
2	20		90				
1.18	11						
0.6	5						
0.425	3	SAND					
0.3	2						
0.15	1						
0.063	0		Go 70 60 60 50 60 40 60 30 60				
		SILT/CLAY					
			0.0001 0.001 0.01 0.1 1 10 100				
	CLAY SILT Sieve size (mm) SAND GRAVEL						
			Approved by: Date: Page no:				
		IGSL Lt	d Materials Laboratory 28/08/24 1 of 1				
	Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)						

			TEST REPORT ermination of Particle Size Distribution accordance with: BS1377:Part2:1990, clause 9.2 & 9.5** (note: Sedimentation stage not accredited)				
particle	%		Contract No. 25468 Report No. R159652				
size	passing		Contract Name : An Triantan Housing Development Kildare Results relate only to the specimen tested in as received				
75	100	COBBLES	BH/TP No. TP01 condition unless otherwise noted. * denotes Customer				
63	100	00000000	Sample No.* AA229997 Lab. Sample No. A24/3367 supplied information. Opinions and interpretations are				
50	100		Sample Type: B outside the scope of accreditation.				
37.5	100		Depth* (m) 2.30 Customer: Kildare Co.Co. / Cundell This report shall not be reproduced except in full without				
28	100		Date Received 24/07/2024 Date Testing started 24/07/2024 the written approval of the Laboratory.				
20	98		Description: Brown slightly sandy, slightly gravelly, SILT/CLAY				
14	96	GRAVEL					
10	93	GIUTEL	Remarks Note: **Clause 9.2 and Clause 9.5 of BS1377:Part 2:1990 have been superseded by ISO17892-4:2016.				
6.3	89		0.063 0.15 0.15 0.15 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.6 11 14 11 14 12 12 16 11 16 11 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16				
5	88						
3.35	85						
2	82		90				
1.18	79						
0.6	76		(%) 70 60 60 50 60 30 60				
0.425	74	SAND					
0.3	71						
0.15	65						
0.063	56						
0.038	48						
0.027	43	SILT/CLAY					
0.017	40						
0.010	35						
0.007	30		0.0001 0.001 0.01 0.1 1 10 100				
0.005	25		CLAY SILT Sieve size (mm) SAND GRAVEL				
0.002	0.002 14						
		IGSL I t	d Materials Laboratory Approved by: Date: Page no:				
I			O Materials Laboratory Image: Marganetic Science and Sci				

			TEST REPORT ermination of Particle Size Distribution accordance with: BS1377:Part2:1990, clause 9.2 & 9.5** (note: Sedimentation stage not accredited)
particle	%		Contract No. 25468 Report No. R160548
size	passing		Contract Name : An Triantan Housing Development Kildare Results relate only to the specimen tested in as received
75	100	COBBLES	BH/TP No. TP02 condition unless otherwise noted. * denotes Customer
63	100	00BBLL0	Sample No.* AA229990 Lab. Sample No. A24/3373 supplied information. Opinions and interpretations are
50	93		Sample Type: B outside the scope of accreditation.
37.5	93		Depth* (m) 1.60 Customer: Kildare Co.Co. / Cundell This report shall not be reproduced except in full without
28	88		Date Received 24/07/2024 Date Testing started 24/07/2024 the written approval of the Laboratory.
20	86		Description: Brown clayey/silty, very sandy, GRAVEL
14	83	GRAVEL	
10	77	GIUTEL	Remarks Note: **Clause 9.2 and Clause 9.5 of BS1377:Part 2:1990 have been superseded by ISO17892-4:2016.
6.3	68		0.063 0.063 0.15 0.15 0.15 0.425 0.0.3 0.425 0.0.3 0.425 0.0.3 0.425 0.0.6 0.15 0.15 0.15 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.0 0.6 0.0 0.0
5	63		
3.35	57		
2	46		90
1.18	34		
0.6	24		
0.425	22	SAND	
0.3	20		
0.15	17		
0.063	15		Percentage passing (%) 70 60 40 30
		SILT/CLAY	
			0.0001 0.001 0.01 0.1 1 10 100
			CLAY SILT Sieve size (mm) SAND GRAVEL
	•		Approved by: Date: Page no:
		IGSL Lt	d Materials Laboratory 28/08/24 1 of 1
			Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)

			TEST REPORT ermination of Particle Size Distribution accordance with: BS1377:Part2:1990, clause 9.2 & 9.5** (note: Sedimentation stage not accredited)	ISO 17025 ACREDITED TESTING DETAILED IN SCOPE REG NO.1331
particle	%		Contract No. 25468 Report No. R159653	
size	passing		Contract Name: An Triantan Housing Development Kildare	Results relate only to the specimen tested in as received
75	100	COBBLES	BH/TP No. TP04	condition unless otherwise noted. * denotes Customer
63	83	COBBLES	Sample No.* AA229994 Lab. Sample No. A24/3370	supplied information. Opinions and interpretations are
50	83		Sample Type: B	outside the scope of accreditation.
37.5	76		Depth* (m) 2.40 Customer: Kildare Co.Co. / Cundell	This report shall not be reproduced except in full without
28	69		Date Received 24/07/2024 Date Testing started 24/07/202	4 the written approval of the Laboratory.
20	64		Description: Brown clayey/silty, very sandy, GRAVEL with some of	obbles
14	59			
10	55	GRAVEL	Remarks Note: **Clause 9.2 and Clause 9.5 of BS1377:Part 2:1990 have been superseded by IS	SO17892-4:2016 . Sample size did not meet the requirements of BS1377
6.3	49		ອ ມີມ ມ <u>ເ</u>	Ω Ω
5	46		0 0	2 3.35 6.3 14 14 75 53 55 53 55 53 55 55 55 55 55 55 55 55
3.35	42			
2	36		90	
1.18	30		80	
0.6	23			
0.425	20	SAND	<u> </u>	
0.3	17			
0.15	13			
0.063	11		Percentage passing (%) 60 40 30 40 50 50 50 50 50 50 50 50 50 5	
			20	
			10	
		SILT/CLAY		
			0.0001 0.001 0.01 1	10 100
			CLAY SILT Sieve size (mm) SAND	GRAVEL
			Approved by:	Date: Page no:
		IGSL Lt	d Materials Laboratory	28/08/24 1 of 1
			Persons authorised to approve report: J Barrett (C	uality Manager) H Byrne (Laboratory Manager)

Appendix 7

Chemical & Environmental Test Records (Soil)

24-23378

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Final Report			Email: info@chemtest.co
Report No.:	24-23378-1		
Initial Date of Issue:	01-Aug-2024		
Re-Issue Details:			
Client	IGSL		
Client Address:	M7 Business Park Naas County Kildare Ireland		
Contact(s):	Darren Keogh		
Project	25408 An Triantan		
Quotation No.:	Q24-34387	Date Received:	23-Jul-2024
Order No.:		Date Instructed:	23-Jul-2024
No. of Samples:	10		
Turnaround (Wkdays):	7	Results Due:	31-Jul-2024
Date Approved:	01-Aug-2024		
Approved By:			
Jul -			

Details:

120

2183

THE

David Smith, Technical Director

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Results - Leachate

Client: IGSL			Chei	mtest Jo	ob No.:	24-23378	24-23378	24-23378	24-23378	24-23378
Quotation No.: Q24-34387			Chemte	st Sam	ple ID.:	1839477	1839479	1839481	1839482	1839485
Order No.:			Clier	nt Samp	le Ref.:	BH3	BH4	BH5	TP1	TP4
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
				Тор Dep	oth (m):	0.65	0.35	1.20	0.40	0.50
				Date Sa	ampled:	19-Jul-2024	19-Jul-2024	19-Jul-2024	19-Jul-2024	19-Jul-2024
Determinand	Accred.	SOP	Туре	Units	LOD					
Ammonium	U	1220	10:1	mg/l	0.050	0.056	0.096	0.053	0.081	0.17
Ammonium	N	1220	10:1	mg/kg	0.10	0.67	1.2	0.57	0.84	1.7

<u>Results - Soil</u>

Project: 25408 An Triantan													
Client: IGSL			Che	mtest J	ob No.:	24-23378	24-23378	24-23378	24-23378	24-23378	24-23378	24-23378	24-23378
Quotation No.: Q24-34387			Chemte	est Sam	ple ID.:	1839476	1839477	1839478	1839479	1839480	1839481	1839482	1839483
Order No.:			Clie	nt Samp	le Ref.:	BH1	BH3	BH2	BH4	BH4	BH5	TP1	TP1
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	1.20	0.65	1.20	0.35	2.00	1.20	0.40	1.50
				Date Sa			19-Jul-2024						
				Asbest	os Lab:		NEW-ASB		NEW-ASB		NEW-ASB	NEW-ASB	
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
АСМ Туре		U	2192		N/A	1	-	1	-		-	-	
							No Asbestos		No Asbestos		No Asbestos	No Asbestos	
Asbestos Identification		U	2192		N/A		Detected		Detected		Detected	Detected	
Moisture		N	2030	%	0.020	11	30	14	16	9.8	20	19	21
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
			2040		10/7	Brown	Stones and	Biowii	Stones and	Brown	Stones and	Stones and	Stones and
Other Material		N	2040		N/A	Stones	Roots	Stones	Roots	Stones	Roots	Roots	Roots
Soil Texture		N	2040		N/A	Clay	Sand						
pH (2.5:1) at 20C		N	2040		4.0	8.4	Janu	8.3	Janu	8.3	Janu	Janu	8.4
Boron (Hot Water Soluble)	+	M	2120	mg/kg	0.40	0.4	1.1	0.3	1.2	0.5	3.3	1.8	0.4
Magnesium (Water Soluble)		N	2120	0 0	0.40	< 0.010	1.1	< 0.010	1.2	< 0.010	5.5	1.0	< 0.010
<u> </u>		M		g/l				< 0.010					
Sulphate (2:1 Water Soluble) as SO4			2120	g/l	0.010	< 0.010				< 0.010			< 0.010
Total Sulphur		U	2175	%	0.010	0.030		0.020		0.020		. 1.0	0.040
Sulphur (Elemental)		M	2180	mg/kg	1.0		1.1		1.4		1.1	< 1.0	
Chloride (Water Soluble)		M	2220	g/l	0.010	< 0.010		< 0.010		< 0.010			< 0.010
Nitrate (Water Soluble)		N	2220	g/l	0.010	< 0.010		< 0.010		< 0.010			0.040
Cyanide (Total)		M	2300	mg/kg	0.50		0.50		< 0.50		0.60	< 0.50	
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50		9.2		4.5		5.9	6.5	
Ammonium (Water Soluble)		M	2220	g/l	0.01	< 0.01		< 0.01		< 0.01			< 0.01
Sulphate (Total)		U	2430	%	0.010		0.29		0.12		0.21	0.098	
Sulphate (Acid Soluble)		U	2430	%	0.010	< 0.010		0.012		< 0.010			0.052
Arsenic		М	2455	mg/kg	0.5		4.0		5.3		5.1	6.2	
Barium		M	2455	mg/kg	0.5		80		90		130	150	
Cadmium		M	2455	mg/kg	0.10		2.3		0.56		1.3	0.91	
Chromium		M	2455	mg/kg	0.5		9.0		9.5		13	11	
Molybdenum		M	2455	mg/kg	0.5		0.9		0.6		0.5	0.6	
Antimony		N	2455	mg/kg	2.0		< 2.0		3.4		< 2.0	< 2.0	
Copper		M	2455	mg/kg	0.50		20		18		24	19	
Mercury		М	2455	mg/kg	0.05		0.13		0.32		0.11	< 0.05	
Nickel		М	2455	mg/kg	0.50		17		17		19	22	
Lead		М	2455	mg/kg	0.50		31		47		50	15	
Selenium		М	2455	mg/kg	0.25		0.84		0.69		0.61	0.52	
Zinc		М	2455	mg/kg	0.50		120		82		190	84	
Chromium (Trivalent)		N	2490	mg/kg	1.0		9.0		9.5		13	11	
Chromium (Hexavalent)		N	2490	mg/kg	0.50		< 0.50		< 0.50		< 0.50	< 0.50	
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05		< 0.05		< 0.05		< 0.05	< 0.05	
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05		< 0.05		< 0.05		< 0.05	< 0.05	1
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	l	< 0.05		< 0.05		< 0.05	< 0.05	
Aliphatic VPH >C8-C10	HS 2D AL	U	2780		0.05	İ	< 0.05	İ	< 0.05	İ	< 0.05	< 0.05	1

Project: 25408 An Triantan													
Client: IGSL			Che	mtest J	ob No.:	24-23378	24-23378	24-23378	24-23378	24-23378	24-23378	24-23378	24-23378
Quotation No.: Q24-34387		C	Chemte	est Sam	ple ID.:	1839476	1839477	1839478	1839479	1839480	1839481	1839482	1839483
Order No.:			Clie	nt Samp	le Ref.:	BH1	BH3	BH2	BH4	BH4	BH5	TP1	TP1
					e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De		1.20	0.65	1.20	0.35	2.00	1.20	0.40	1.50
				Date Sa	ampled:	19-Jul-2024	19-Jul-2024	19-Jul-2024	19-Jul-2024	19-Jul-2024	19-Jul-2024	19-Jul-2024	19-Jul-2024
				Asbest	os Lab:		NEW-ASB		NEW-ASB		NEW-ASB	NEW-ASB	
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25		< 0.25		< 0.25		< 0.25	< 0.25	
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00		< 2.0		< 2.0		< 2.0	< 2.0	
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	М	2690	mg/kg	1.00		< 1.0		< 1.0		< 1.0	< 1.0	
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00		4.2		< 2.0		< 2.0	< 2.0	
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	М	2690	mg/kg	3.00		22		3.5		12	< 3.0	
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	Ν	2690	mg/kg	10.00		< 10		< 10		< 10	< 10	
Total Aliphatic EPH >C10-C35 MC	EH 2D AL #1	М	2690	mg/kg	5.00		27		< 5.0		13	< 5.0	
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05		< 0.05		< 0.05		< 0.05	< 0.05	
Aromatic VPH >C7-C8	HS 2D AR	U	2780	mg/kg	0.05		< 0.05		< 0.05		< 0.05	< 0.05	
Aromatic VPH >C8-C10	HS 2D AR	U	2780	mg/kg	0.05		< 0.05		< 0.05		< 0.05	< 0.05	
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	mg/kg	0.25		< 0.25		< 0.25		< 0.25	< 0.25	
Aromatic EPH >C10-C12 MC	EH 2D AR #1	U	2690	mg/kg	1.00		< 1.0		< 1.0		< 1.0	< 1.0	
Aromatic EPH >C12-C16 MC	EH 2D AR #1	U	2690	mg/kg	1.00		< 1.0		< 1.0		< 1.0	< 1.0	
Aromatic EPH >C16-C21 MC	EH 2D AR #1	U	2690	mg/kg	2.00		2.9		3.8		3.9	3.1	
Aromatic EPH >C21-C35 MC	EH 2D AR #1	U	2690	mg/kg	2.00		49		7.1		24	3.9	
Aromatic EPH >C35-C40 MC	EH 2D AR #1	N	2690	mg/kg	1.00		18		< 1.0		13	2.6	
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	5.00		52		11		28	7.0	
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50		< 0.50		< 0.50		< 0.50	< 0.50	
Total EPH >C10-C35 MC	EH 2D Total #1	U	2690	mg/kg	10.00		80		14		41	< 10	
Mineral Oil EPH		N	2670	mg/kg	10		< 10		< 10		< 10	< 10	
Benzene		М	2760	µg/kg	1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Toluene		М	2760	µg/kg	1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Ethylbenzene		М	2760	µg/kg	1.0		< 1.0		< 1.0		< 1.0	< 1.0	
m & p-Xylene		М	2760	µg/kg	1.0		< 1.0		< 1.0		< 1.0	< 1.0	
o-Xylene		М	2760	µg/kg	1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Naphthalene		М	2800	mg/kg	0.10		0.19		< 0.10		< 0.10	< 0.10	
Acenaphthylene		Ν	2800	mg/kg	0.10		0.15		< 0.10		< 0.10	< 0.10	
Acenaphthene		М	2800	mg/kg	0.10		0.27		< 0.10		< 0.10	< 0.10	
Fluorene		М	2800	mg/kg	0.10		0.24		< 0.10		< 0.10	< 0.10	
Phenanthrene		М	2800	mg/kg	0.10		0.34		< 0.10		< 0.10	< 0.10	
Anthracene		М	2800	mg/kg	0.10		0.24		< 0.10		< 0.10	< 0.10	
Fluoranthene		М	2800	mg/kg	0.10		0.55		< 0.10		< 0.10	< 0.10	
Pyrene		М	2800	mg/kg	0.10		0.53		< 0.10		< 0.10	< 0.10	
Benzo[a]anthracene		М	2800	mg/kg	0.10		0.44		< 0.10		< 0.10	< 0.10	
Chrysene		М	2800	mg/kg	0.10		0.47		< 0.10		< 0.10	< 0.10	
Benzo[b]fluoranthene		М	2800	mg/kg	0.10		0.55		< 0.10		< 0.10	< 0.10	
Benzo[k]fluoranthene		М	2800	mg/kg	0.10		0.34		< 0.10		< 0.10	< 0.10	
Benzo[a]pyrene		М			0.10		0.43		< 0.10		< 0.10	< 0.10	

<u>Results - Soil</u>

riejeett zeriee / ar mantan													
Client: IGSL			Che	mtest J	ob No.:	24-23378	24-23378	24-23378	24-23378	24-23378	24-23378	24-23378	24-23378
Quotation No.: Q24-34387		(Chemte	est Sam	ple ID.:	1839476	1839477	1839478	1839479	1839480	1839481	1839482	1839483
Order No.:			Clie	nt Samp	le Ref.:	BH1	BH3	BH2	BH4	BH4	BH5	TP1	TP1
				Samp	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	1.20	0.65	1.20	0.35	2.00	1.20	0.40	1.50
				Date Sa	ampled:	19-Jul-2024	19-Jul-2024	19-Jul-2024	19-Jul-2024	19-Jul-2024	19-Jul-2024	19-Jul-2024	19-Jul-2024
				Asbest	os Lab:		NEW-ASB		NEW-ASB		NEW-ASB	NEW-ASB	
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Indeno(1,2,3-c,d)Pyrene		Μ	2800	mg/kg	0.10		0.52		< 0.10		< 0.10	< 0.10	
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10		0.44		< 0.10		< 0.10	< 0.10	
Coronene		N		mg/kg			< 0.10		< 0.10		< 0.10	< 0.10	
PCB 28		U			0.010		< 0.010		< 0.010		< 0.010	< 0.010	
PCB 52		U	2815	mg/kg	0.010		< 0.010		< 0.010		< 0.010	< 0.010	
PCB 101		U	2815	mg/kg	0.010		< 0.010		< 0.010		< 0.010	< 0.010	
PCB 118		U	2815	mg/kg	0.010		< 0.010		< 0.010		< 0.010	< 0.010	
PCB 153		U		mg/kg			< 0.010		< 0.010		< 0.010	< 0.010	
PCB 138		U	2815	mg/kg	0.010		< 0.010		< 0.010		< 0.010	< 0.010	
PCB 180		U	2815	mg/kg	0.010		< 0.010		< 0.010		< 0.010	< 0.010	
Tot PCBs Low (7 Congeners)		Ν	2815	mg/kg	0.05		< 0.05		< 0.05		< 0.05	< 0.05	
Total Phenols		M	2920	mg/kg	0.10		< 0.10		< 0.10		< 0.10	< 0.10	

Client: IGSL			Chei	mtest Jo	ob No.:	24-23378	24-23378
Quotation No.: Q24-34387		(Chemte	st Sam	ple ID.:	1839484	1839485
Order No.:			Clier	nt Samp	le Ref.:	TP3	TP4
				Sampl	е Туре:	SOIL	SOIL
				Тор Dep	oth (m):	1.40	0.50
				Date Sa	ampled:	19-Jul-2024	19-Jul-2024
				Asbest	os Lab:		NEW-ASB
Determinand	HWOL Code	Accred.	SOP	Units	LOD		
АСМ Туре		U	2192		N/A		-
Asbestos Identification		U	2192		N/A		No Asbestos Detected
Moisture		N	2030	%	0.020	10	15
Soil Colour		N	2040		N/A	Brown	Brown
Other Material		N	2040		N/A	Stones	Stones and Roots
Soil Texture		N	2040		N/A	Sand	Sand
pH (2.5:1) at 20C		N	2010		4.0	8.6	
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40		1.5
Magnesium (Water Soluble)		N	2120	g/l	0.010	< 0.010	
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	< 0.010	
Total Sulphur		U	2175	%	0.010	0.020	
Sulphur (Elemental)		М	2180	mg/kg	1.0		2.6
Chloride (Water Soluble)		М	2220	g/l	0.010	< 0.010	
Nitrate (Water Soluble)		N	2220	g/l	0.010	< 0.010	
Cyanide (Total)		М	2300	mg/kg	0.50		< 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50		2.8
Ammonium (Water Soluble)		Μ	2220	g/l	0.01	< 0.01	
Sulphate (Total)		U	2430	%	0.010		0.065
Sulphate (Acid Soluble)		U	2430	%	0.010	< 0.010	
Arsenic		М	2455	mg/kg	0.5		4.8
Barium		М	2455	mg/kg	0.5		85
Cadmium		М	2455	mg/kg	0.10		0.74
Chromium		Μ	2455	mg/kg	0.5		8.7
Molybdenum		М	2455	mg/kg	0.5		< 0.5
Antimony		N	2455	mg/kg	2.0		< 2.0
Copper		М	2455	mg/kg			19
Mercury		M	2455	mg/kg	0.05		< 0.05
Nickel		М	2455	mg/kg			18
Lead		М	2455	mg/kg			14
Selenium		М	2455	mg/kg			0.40
Zinc		М	2455	mg/kg			84
Chromium (Trivalent)		N	2490	mg/kg	1.0		8.7
Chromium (Hexavalent)		N	2490	mg/kg	0.50		< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg			< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg			< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05		< 0.05
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05		< 0.05

Project: 25408 An Triantan			Chei	mtest Jo	b No.:	24-23378	24-23378
Quotation No.: Q24-34387		(st Sam		1839484	1839485
Order No.:				nt Samp		TP3	TP4
					e Type:	SOIL	SOIL
				Top Dep		1.40	0.50
				Date Sa	. ,	19-Jul-2024	19-Jul-2024
				Asbest		10 001 2021	NEW-ASB
Determinand	HWOL Code	Accred.	SOP	Units			HEIT NOD
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg			< 0.25
Aliphatic EPH >C10-C12 MC	EH 2D AL #1	M	2690	mg/kg			< 2.0
Aliphatic EPH >C12-C16 MC	EH 2D AL #1	M	2690	mg/kg			< 1.0
Aliphatic EPH >C16-C21 MC	EH 2D AL #1	М	2690	mg/kg	2.00		< 2.0
Aliphatic EPH >C21-C35 MC	EH 2D AL #1	М	2690	mg/kg	3.00		4.1
Aliphatic EPH >C35-C40 MC	EH 2D AL #1	N	2690	mg/kg	10.00		< 10
Total Aliphatic EPH >C10-C35 MC	EH 2D AL #1	M	2690	mg/kg	5.00		< 5.0
Aromatic VPH >C5-C7	HS 2D AR	U	2780	mg/kg	0.05		< 0.05
Aromatic VPH >C7-C8	HS 2D AR	U	2780	mg/kg			< 0.05
Aromatic VPH >C8-C10	HS 2D AR	U	2780	mg/kg	0.05		< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	mg/kg	0.25		< 0.25
Aromatic EPH >C10-C12 MC	EH 2D AR #1	U	2690	mg/kg	1.00		< 1.0
Aromatic EPH >C12-C16 MC	EH 2D AR #1	U	2690	mg/kg	1.00		< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00		3.5
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00		3.9
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	1.00		< 1.0
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	5.00		7.4
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50		< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg	10.00		12
Mineral Oil EPH		N	2670	mg/kg	10		< 10
Benzene		М	2760	µg/kg	1.0		< 1.0
Toluene		М	2760	µg/kg	1.0		< 1.0
Ethylbenzene		М	2760	µg/kg	1.0		< 1.0
m & p-Xylene		М	2760	µg/kg	1.0		< 1.0
o-Xylene		М	2760	µg/kg	1.0		< 1.0
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0		< 1.0
Naphthalene		М	2800	mg/kg	0.10		< 0.10
Acenaphthylene		N	2800	mg/kg	0.10		< 0.10
Acenaphthene		М	2800	mg/kg	0.10		< 0.10
Fluorene		М	2800	mg/kg	0.10		< 0.10
Phenanthrene		М	2800	mg/kg	0.10		< 0.10
Anthracene		М	2800	mg/kg	0.10		< 0.10
Fluoranthene		М	2800	mg/kg	0.10		< 0.10
Pyrene		М	2800	mg/kg	0.10		< 0.10
Benzo[a]anthracene		М	2800	mg/kg	0.10		< 0.10
Chrysene		М	2800	mg/kg	0.10		< 0.10
Benzo[b]fluoranthene		М	2800	mg/kg	0.10		< 0.10
Benzo[k]fluoranthene		М	2800	mg/kg	0.10		< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10		< 0.10

Client: IGSL			Che	mtest Jo	ob No.:	24-23378	24-23378
Quotation No.: Q24-34387		0	Chemte	st Sam	ple ID.:	1839484	1839485
Order No.:		Client Sample Ref.:				TP3	TP4
				Sampl	e Type:	SOIL	SOIL
				Тор Dep	oth (m):	1.40	0.50
		1		Date Sa	ampled:	19-Jul-2024	19-Jul-2024
		1		Asbest	os Lab:		NEW-ASB
Determinand	HWOL Code	Accred.	SOP	Units	LOD		
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10		< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10		< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10		< 0.10
Coronene		N	2800	mg/kg	0.10		< 0.10
PCB 28		U	2815	mg/kg	0.010		< 0.010
PCB 52		U	2815	mg/kg	0.010		< 0.010
PCB 101		U	2815	mg/kg	0.010		< 0.010
PCB 118		U	2815	mg/kg	0.010		< 0.010
PCB 153		U	2815	mg/kg	0.010		< 0.010
PCB 138		U	2815	mg/kg	0.010		< 0.010
PCB 180		U	2815	mg/kg	0.010		< 0.010
Tot PCBs Low (7 Congeners)		N	2815	mg/kg	0.05		< 0.05
Total Phenols		М	2920	mg/kg	0.10		< 0.10

Chemtest Job No:	24-23378					Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1839477						Limits	
Sample Ref:	BH3						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.65					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	19-Jul-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		М	%	8.6	3	5	6
Loss On Ignition	2610		М	%	20			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		Ν	mg/kg	5.7	100		
pH at 20C	2010		М		8.9		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.0080		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 l/kg
Arsenic	1455		U	0.0003	0.0035	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0018	0.018	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0006	0.0059	0.5	10	30
Nickel	1455		U	0.0007	0.0071	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.006	0.055	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.094	< 1.0	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		N	76	750	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	4.3	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	30

Waste Acceptance Criteria

Chemtest Job No:	24-23378					Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1839479						Limits	
Sample Ref:	BH4						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.35					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	19-Jul-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		М	%	4.1	3	5	6
Loss On Ignition	2610		М	%	6.5			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		N	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.8		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.015		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 l/kg
Arsenic	1455		U	0.0013	0.013	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0006	0.0057	0.5	10	70
Copper	1455		U	0.0016	0.016	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0006	0.0065	0.5	10	30
Nickel	1455		U	0.0013	0.013	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.006	0.063	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.096	< 1.0	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		Ν	51	510	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	5.9	59	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	16

Waste Acceptance Criteria

Chemtest Job No:	24-23378					Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1839481						Limits	
Sample Ref:	BH5						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.20					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	19-Jul-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	6.9	3	5	6
Loss On Ignition	2610		М	%	14			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		Ν	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.9		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.014		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 l/kg
Arsenic	1455		U	0.0005	0.0051	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0019	0.019	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0002	0.0020	0.5	10	30
Nickel	1455		U	0.0009	0.0092	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0006	0.0063	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.008	0.083	4	50	200
Chloride	1220		U	2.0	20	800	15000	25000
Fluoride	1220		U	0.10	1.0	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		N	43	430	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	4.3	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	20

Waste Acceptance Criteria

Chemtest Job No:	24-23378					Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1839482						Limits	
Sample Ref:	TP1						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.40					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	19-Jul-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		М	%	2.8	3	5	6
Loss On Ignition	2610		М	%	5.4			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		Ν	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.0		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.011		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	s for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455		U	0.0011	0.011	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0007	0.0072	0.5	10	70
Copper	1455		U	0.0014	0.014	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0004	0.0040	0.5	10	30
Nickel	1455		U	0.0017	0.017	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.004	0.040	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.10	1.0	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		N	36	360	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	4.6	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	19

Waste Acceptance Criteria

Chemtest Job No:	24-23378					Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1839485						Limits	
Sample Ref:	TP4						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.50					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	19-Jul-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	1.5	3	5	6
Loss On Ignition	2610		М	%	4.2			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total Of 17 PAHs Lower	2800		Ν	mg/kg	< 1.0	100		
pH at 20C	2010		М		8.3		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.0090		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	s for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455		U	0.0008	0.0077	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0014	0.014	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0003	0.0033	0.5	10	30
Nickel	1455		U	0.0011	0.011	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.008	0.078	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.10	1.0	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		N	35	350	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	1 1	U	5.3	53	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	15

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
1010	pH Value of Waters	pH at 20°C	pH Meter	
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity at 25°C and Total Dissolved Solids (TDS) in Waters	Conductivity Meter	
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.	
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).	
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation	
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.	
2010	pH Value of Soils	pH at 20°C	pH Meter	
2015	Acid Neutralisation Capacity	Acid Reserve	Titration	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <30°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p- phenylenediamine.	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.	
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.	
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID	

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2690	EPH A/A Split		Acetone/Heptane extraction / GCxGC FID detection	
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	
2780	VPH A/A Split	Aliphatics: >C5–C6, >C6–C7,>C7–C8,>C8- C10 Aromatics: >C5–C7,>C7-C8,>C8–C10		
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS	
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS. Reported PCB 101 results may contain contributions from PCB 90 due to inseparable chromatography.	
2920	Phenols in Soils by HPLC	Phanol Mathylphanole Limothylphanole	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	
640	Characterisation of Waste (Leaching C10)		ComplianceTest for Leaching of Granular Waste Material and Sludge	

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"
- SOP Standard operating procedure
- LOD Limit of detection

This report shall not be reproduced except in full, and only with the prior approval of the laboratory.

Any comments or interpretations are outside the scope of UKAS accreditation.

The Laboratory is not accredited for any sampling activities and reported results relate to the samples 'as received' at the laboratory.

Uncertainty of measurement for the determinands tested are available upon request .

None of the results in this report have been recovery corrected.

All results are expressed on a dry weight basis.

The following tests were analysed on samples 'as received' and the results subsequently corrected to a dry weight basis EPH, VPH, TPH, BTEX, VOCs, SVOCs, PCBs, Phenols.

For all other tests the samples were dried at $\leq 30^{\circ}$ C prior to analysis.

All Asbestos testing is performed at the indicated laboratory .

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1.

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt. All water samples will be retained for 14 days from the date of receipt. Charges may apply to extended sample storage.

Water Sample Category Key for Accreditation

DW - Drinking Water GW - Ground Water LE - Land Leachate NA - Not Applicable

- PL Prepared Leachate
- PW Processed Water
- RE Recreational Water
- SA Saline Water
- SW Surface Water
- TE Treated Effluent
- TS Treated Sewage
- UL Unspecified Liquid

Clean Up Codes

- NC No Clean Up
- MC Mathematical Clean Up
- FC Florisil Clean Up

HWOL Acronym System

- HS Headspace analysis
- $\mathsf{E}\mathsf{H}$ $\mathsf{Extractable}$ hydrocarbons i.e. everything extracted by the solvent
- \mbox{CU} $\mbox{Clean-up}-\mbox{e.g.}$ by Florisil, silica gel
- 1D GC Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatic only
- 2D GC-GC Double coil gas chromatography
- #1 EH_2D_Total but with humics mathematically subtracted
- #2 EH_2D_Total but with fatty acids mathematically subtracted
- + Operator to indicate cumulative e.g. EH+EH_Total or EH_CU+HS_Total
- If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Appendix 8

Exploratory Hole Location Plan

25468 - An Triantán, Station Road Housing

Ģ

Exploratory Hole Location Plan

Legend

- Cable Percussion Borehole
- Trial Pit w/ Plate Bearing Test
- Trial Pit w/ Plate Bearing Test & Soakaway Test (to BRE365)

TP04/PBT04/SA02

P01/PBT01

EFFT

60 m 💌

ð

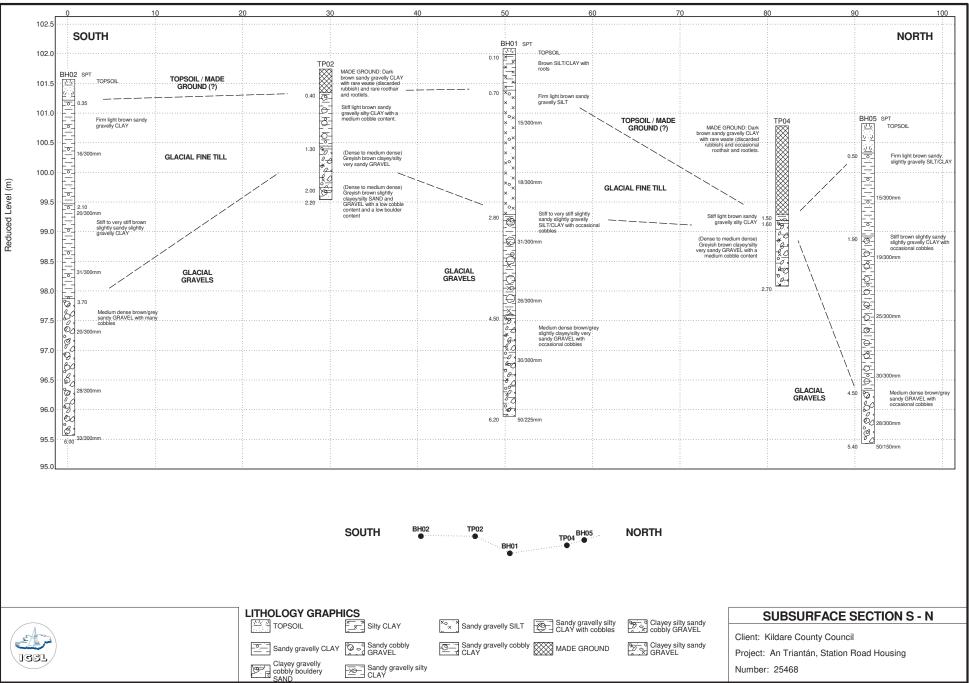
(III)

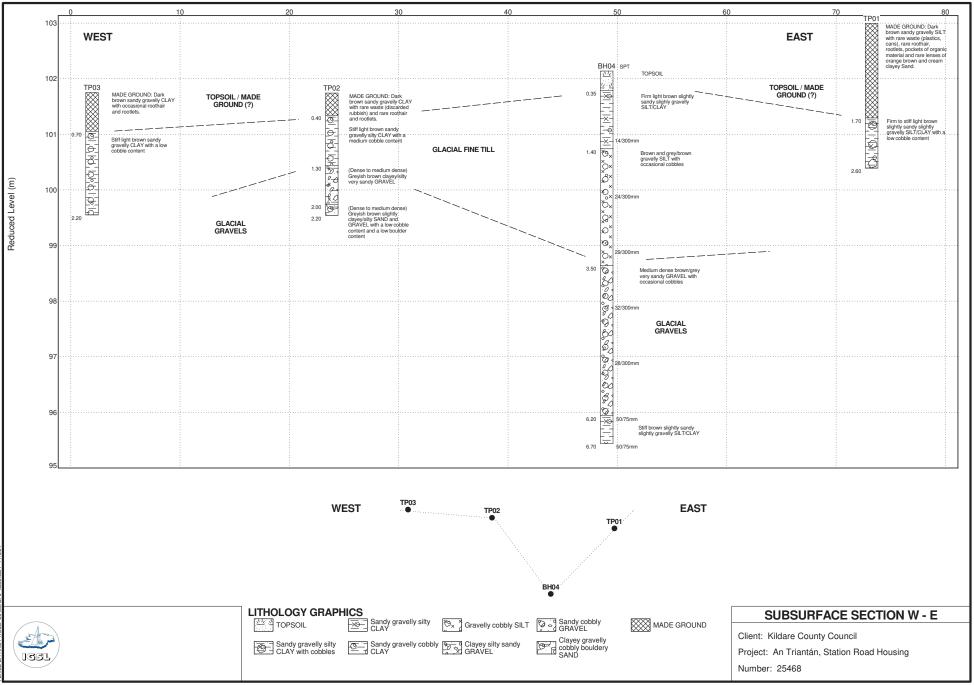
BH05

BH01

BH04

P02/PBT02/SA01


P03/PBT03


BH02

Google Earth

Appendix 9

Stratigraphic Cross Sections



Appendix C – Utility Survey

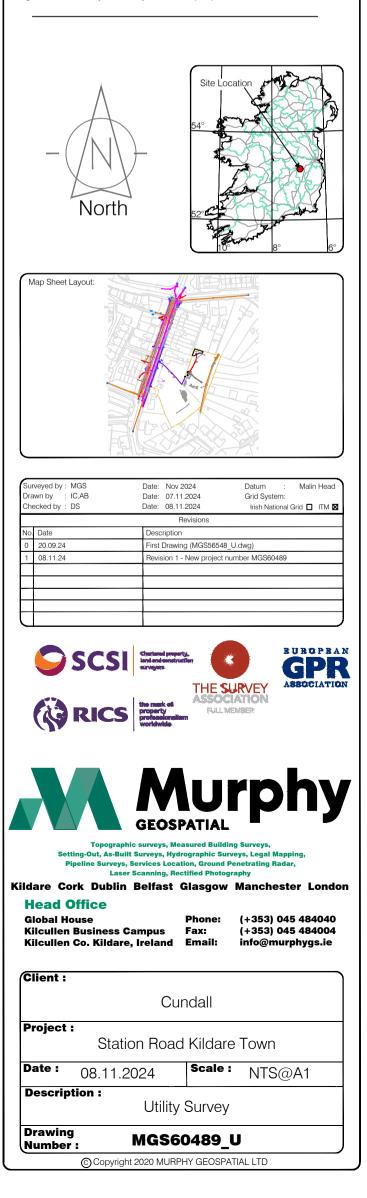
LEGEN					
Underground Utilities					
Water Main	Gas Gas				
Fire Water	Hydrogen Pipe				
PW Process Water	Oil Oil Pipe				
Storm water Drainage	Mag Magnet				
Foul Sewer	Adshel				
Combined Sewer	Trf Traffic				
Wannole Champer	Heating Pipe				
Eircom	Electrical				
INTL/VIrgin	PL Public Lighting				
ENET/OCEAN -	GPR Anomaly				
DI/EGAI	uk Cbl Unknown Cable Duct				
COIL	ED_ Unknown Empty Duct				
Aurora	Nitrogen Pipe				
Bend / Weld	nk Serv Unidentified Service				
Oxygen Pipe	Unidentified Radio Signal				
→ WELD Weld Point	Photo point				
Reinforced Concrete (GPR)	Possible Slab (GPR)				
Cther observations - see de					
Depth from ground level to Top of Pipe/GPR Target (m)	UTO Unable to Open NPV No pipes visible				
Ø150 PE Pipe/Duct diameter (mm) and	WL Water Level				
S/L Signal Lost UTT Unable T/L Trace Lost UTS Unable N/S No Signal Blkd Blocke Exp Exposed CD Closed O/S Off-site	to sonde Unk Unknown d Ab. Abandoned				
(Records) Utility taken from records	Poss./Prob. Possible/Probable				
CC Concrete CI Cast Iron VC Vitrified Clay DI Ductile II BR Brick ST Steel					
Z 4:100.00	, , , , , , , , , , , , , , , , ,				

Murphy Geospatial Ltd. Disclaimer

The survey aims to map all existing utilities and sub surface structures and provide information with respect to pipe size, material type and drainage connectivity. However GPR surveying is limited by the following guidelines and it may not be possible to accurately survey, define and locate all services and sub surface fractures.

- Locational accuracy is determined by referring to the manufacturers guidelines for the detectors used.
 Existing record information showing underground services is often incomplete and unknown accuracy; therefore it should be regarded only as
- In ideal conditions these spatial accuracies for the underground utilities are +/- 5% for the RD4000 and +/- 10% of depth for the GPR to 2.5m deep.
- However, variations within the subsurface may alter this estimated accuracy.
 Although all reasonable steps have been taken to locate all features, there is no guarantee that all will be shown on the drawing as some above ground features may have obstructed the survey.
- GPR surveying operates best within high resistivity material. Clay overburden can impair GPR surveying.
 Due to the attenuation of the radar signal with depth, resolution is restricted,
- Due to the alternation of the factal signal with depth, resolution is festilitet hence making identification of anomalies difficult with increasing depth.
 The depth penetration and quality of the data depends on the ground conditions on the site. Poor data may be a result of areas with high
- conductivity. Also, high reflective materials close to the surface i.e. rebar may hide deeper anomalies.It is not always possible to trace the entire length of each underground service.
- service.
 It is always our intention to use the Utility providers' details, if supplied prior to survey commencement as a guide for location purposes. However, should we not be able to locate those guided services we shall not be held responsible for the accuracy, or otherwise, of the location of that service, as issued by the utility provider and therefore shown "Taken from Records" on the drawing and we are not liable for any loss that may arise due to the lack of accuracy in the guided information.
 Unless otherwise stated, all services and sub surface structures shown on
- Murphy Geospatial Limited plan drawings have been surveyed using approved detectors and the connections between manholes, if not traced, are assumed to run straight.
 Plan accuracies of the order of + or 150mm may be achieved but this figure will depend on the depth of the service below ground level. Where
- similar services run on close proximity, separation may be impossible.
 Successful tracing of non metallic pipes may be limited.
 Please note that not all buried pipes, cables and ducts can be detected and mapped in consideration of their depth, location, material type, geology and proximity to other utilities. Even an appropriate and professionally executed
- proximity to other utilities. Even an appropriate and professionally executed survey may not be able to achieve a 100% detection rate.Services which have been untraceable are shown from Records where possible.

DP represents distance from the surface level to the top of the service/ radar.
 DP allowance has been made within our quotation, unless otherwise stated, for the location and mapping of undeclared services. Failure to detect or fully map any declared service will be recorded within the notes accompanying our final drawings.


Where technically possible, depth indications will be given. These should be used for guidance only and wherever critical accuracy is required these should be confirmed by the Client by undertaking trial excavations or similar. Bends, lateral service connections, or the close proximity of other services and local magnetic, atmospheric or ground conditions, could in certain situations influence the accuracy of the plan and depth indication facility. Depths will not be provided unless we are reasonably confident of their validity. Where Murphy Geospatial Limited issues a CAD drawn utility service plan, this

where murping Geospatia Limited issues a CAD drawn utility service plan, this should be read in conjunction with all available public utility records etc. As part of our exhaustive Quality Control procedures, Murphy Geospatial Limited Endeavour to add relevant Public Utility record information onto the final issue drawing. An allowance should be made for the width of services, particularly where these are laid in bands or are of significant size etc. For clarification or appropriate easement bands, we would recommend that direct contact is made with the Asset Owner or Statutory Undertaker.

- Appropriate easement barras, we would recommend that direct contact is made with the Asset Owner or Statutory Undertaker.
 We exclude the following, except where otherwise specified and possible to do so;
 All private service connections, (including water or gas fittings where no through flow of applied signal is possible.
 Pot ended or disconnected cables or terminated short lengths of pipe.
- Pot ended or disconnected cables or terminated short lengths of pipe.
 Internal building services
 Fibre optic cables (except where laid with a standard communications cable
- or built in tracer wire or similar conductor system) or can be clearly located using ground penetrating radar.
 Small diameter cables less than 17mm diameter, or pipes less than 38mm diameter.
- Above ground services unless specifically requested.
 Lifting manhole covers which require longer than 10 minute effort using standard heavy duty lifting apparatus.
- standard heavy duty lifting apparatus.
 Services positioned directly below other pipes or cables etc (i.e. masking signal) intrusive verification on tions and light a service standard stand standard s
- signal) intrusive verification options available on request.
 Deep non metallic pipes, ducts or culverts (unless probing or Pipe Track 3d is specified as part of the fully invasive survey option).
 Passing through defective pipework (displaced joints etc) or acute bends

Please note that our Quotation does not allow for location of individual service feeds to properties unless reasonable to do so, as access would be required into each property to apply direct connections to inlet points and this would significantly increase the scope of work, survey cost and also cause possible disruption to occupants.

disruption to occupants. All work carried out by Murphy Geospatial Limited (MGS) conforms to the guidelines set out by The Survey Association (TSA).

The orange line, as shown, on this particular drawing and bounding the entire of the utility survey area is merely for the purpose of indicating the extent of the area that was surveyed. It must not be taken as being commensurate with the extents of the entire of the plot of ground that the Client may own [or not]. In order to establish the ownership of the survey area Murphy Geospatial do advise consulting with

Appendix D – CCTV Survey

Project	
Project Name:	Kildare Town_ Kildare County Council
Project Date:	20/08/2024
Inspection Standard:	MSCC5 Sewers & Drainage GB (SRM5 Scoring)

McGuiness Maintenance Services

Shean, Edenderry

Table of Contents

Project NameProject NumberProject DaKildare Town_ Kildare County Council20/08/202						
Project Information		F	P-1			
Scoring Summary		F	P-2			
Section Profile		F	P-3			
Section Item 1: Melitta $Rd > MH1$ (Melitta RdX)			1			
Section Item 2: MH1 > MH3 (MH1X)			3			
Section Item 3: MH4 > Line B (MH4X)			5			
Section Item 4: MH1 > Line B (MH1X)			7			
Section Item 5: Line A > MH1 (Line AX)			9			

WinCan

McGuiness Maintenance Services Shean, Edenderry

Project Information

Project Name	Proje
Kildare Town Kildare County Council	

oject Number

Project Date 20/08/2024

Client

Company:	Kildare County Council
Contact:	James Glancy
Street:	Council Buildings
Town or City:	Naas
County:	Kiladre

Contractor

Company:	McGuiness Maintenance Services
Contact:	Frank McGuiness
Street:	Shean
Town or City:	Edenderry
County:	Offaly

McGuiness Maintenance Services Shean, Edenderry

Scoring Summary

Project Name Kildare Town_ Kildare County Council Project Number

Project Date 20/08/2024

Structural Defects

- Grade 3: Best practice suggests consideration should be given to repairs in the medium term.
- Grade 4: Best practice suggests consideration should be given to repairs to avoid a potential collapse.
- Grade 5: Best practice suggests that this pipe is at risk of collapse at any time. Urgent consideration should be given to repairs to avoid total failure.

Section	PLR	Grade	Description
5	Line AX	4	Broken pipe from 10 o'clock to 2 o'clock

Service / Operational Condition

- Grade 3: Best practice suggests consideration should be given to maintenance activities in the medium term.
- Grade 4: Best practice suggests consideration should be given to maintenance activity to avoid potential blockages.
- Grade 5: Best practice suggests that this pipe is at a high risk of backing up or causing flooding.

Section	PLR	Grade	Description
2	MH 1X	4	Settled deposits, fine, 30% cross-sectional area loss
3	MH 4X	4	Settled deposits, fine, 30% cross-sectional area loss
5	Line AX		Other obstacles, protruding through wall from 10 o'clock to 2 o'clock, 50% cross-sectional area loss

Abandoned Surveys

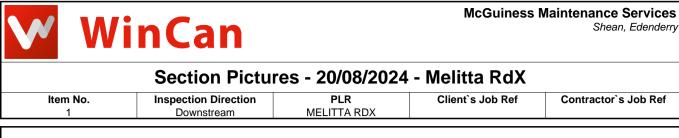
Section	PLR	Description
2	MH 1X	Survey abandoned
3	MH 4X	Survey abandoned
4	MH 1X	Survey abandoned
5	Line AX	Survey abandoned

Information

These scoring summaries are based on the SRM grading from the WRc.

McGuiness Maintenance Services

Shean, Edenderry


			Sectio	on Profile			
	Pro Kildare Town	ject Name Kildare County Counci	l	Project N	lumber	Project D 20/08/20	ate 24
Circula	ar, 225 mm						
Item No.	Upstream Node	Downstream Node	Date	Road	Material	Total Length	Inspected Length
1	Melitta Rd	MH 1	20/08/2024	Kildare	Polyvinyl chloride		0.00 m
		rcular 225 mm, 0 <mark>0.00 m Total Le</mark>				ected Length	

WinCan

McGuiness Maintenance Services Shean, Edenderry

				nspection - 20	J/U8/2024 - I		JA		
Item No. 1	Insp. No	. Date 20/08/24	Time 16:49	Client`s Job Ref Not Specified	Weather No Rain Or Snow	Pre Cle Not Spe		PL MELITT	
	erator	20/08/24 Vehi		Camera	Preset Length	Legal S		Alterna	
•	pecified	Not Spe	ecified	Mini Cam	Not Specified	Not Spe		Not Sp	ecified
Town or V	'illage:	Kildare Tow	n	Inspection Direction:	Downstream	Upstream N	ode:	MELITT	A RD
Road:		Kildare		Inspected Length:	0.00 m	Upstream P	ipe Depth:		
Location:				Total Length:	0.00 m	Downstream	n Node:	MH 1	
Surface Ty	ype:			Joint Length:		Downstream	n Pipe Depth	n:	
Use:					Pipe Shape:	Circular			
Type of Pi		Gravity drain	n/sewer		Dia/Height:	225 mm			
Flow Cont		No flow con			Material:	Polyvinyl chl	oride		
Year Cons		Not Specifie			Lining Type:	No Lining			
Inspection Comments Recomme	s:	Sample con	dition surve	У	Lining Material:	No Lining			
Scale:	1:50 F	osition [m]	Code	Observation			MPEG	Photo	Grade
	oth: m tta Rd	0.00	МН	Start node, manhole,	rafaranca: Malitta Pd		00:00:00	Melitta	
\langle	K							RdX_2008 2024_164	
м	H 1	0.00	WL	Water level, 5% of the	e vertical dimension		00:00:00		
•		0.00	WL	Water level, 5% of the distance camera leng		Jnknown	00:02:35		
Dej	oth: m	0.00	MHF	Finish node, manhole camera length didn't d		nknown distance	00:02:35	Melitta RdX_2008 2024_164	
		Constructio				Miscellaneou			
STR No. D	Def STR I	Structural	Defects	R Total STR Grade		Miscellaneou ervice & Operatio	nal Observat		ER Grade

Melitta RdX_20082024_1649_Sec1_Insp1_MH_0m.jpg, 00:00:00, 0.00 m Start node, manhole, reference: Melitta Rd

Melitta RdX_20082024_1649_Sec1_Insp1_MHF_0m.jpg, 00:02:35, 0.00 m Finish node, manhole, reference: MH 1, Unknown distance camera length didn't change

McGuiness Maintenance Services Shean, Edenderry

	sp. No.	Date	Time	Client's Job Ref	Weather		Cleaned		PLR
2 Operate	1 or	16/08/24	14:51 icle	Not Specified Camera	No Rain Or Snow Preset Length		Specified al Status		H 1X Native ID
Not Speci			ecified	Mini Cam	Not Specified		Specified		pecified
own or Villa	je:	Kildare Tov	vn	Inspection Direction:	Downstream	Upstrear	n Node:	MH 1	
oad:	J • ·	Kildare		Inspected Length:	0.00 m	-	n Pipe Depth		
ocation:				Total Length:	0.00 m	-	eam Node:	MH 3	
urface Type	:			Joint Length:		Downstr	eam Pipe De	oth:	
se:					Pipe Shape:	Circular			
ype of Pipe:		Gravity dra	in/sewer		Dia/Height:	225 mm			
low Control:		No flow cor	ntrol		Material:	Polyvinyl	chloride		
ear Constru		Not Specifi	ed		Lining Type:	No Lining	9		
spection Pu	rpose:	Sample cor	ndition surve	ey	Lining Material:	No Lining	9		
omments: ecommenda	tions:								
cale: 1:5	0 Po	sition [m]	Code	Observation			MPEG	i Photo	Grade
Depth: MH 1	m								
)	0.00	MH	Start node, manhole,	reference: MH 1		00:00:0	0 MH 1X_1608 024_145	
	\mathbb{N}	0.00	WL	Water level, 5% of th	e vertical dimension		00:00:0	0	
¥		0.00	DES	Settled deposits, fine	, 30% cross-sectional a	area loss	00:00:0	0 MH 1X_1608 024_145	
		0.00	SA	Survey abandoned: I line	Jnable to complete sur	vey due to si	ilt in 00:00:1		32
		Constructio	on Features			Miscellan	eous Features	3	

0

0.0

0.0

0.0

1.0

1

5.0

0.0

5.0

4.0

12:46:43 9-JUL-2024

MH 1X_16082024_1451_Sec2_Insp1_SA_0m.jpg, 00:00:13, 0.00 m Survey abandoned, Unable to complete survey due to silt in line

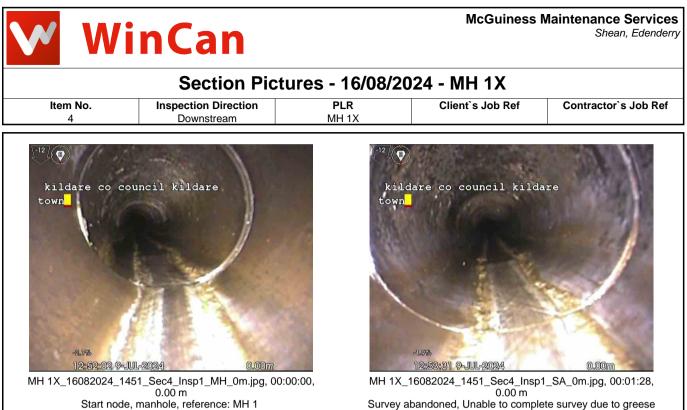
0.00m

McGuiness Maintenance Services Shean, Edenderry

Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Clea	ned	PLR	2
3	1	16/08/24	14:51	Not Specified	No Rain Or Snow	Not Spec	ified	MH 4	Х
•	rator	-	nicle	Camera	Preset Length	Legal Sta			
Not S	pecified	Not Sp	becified	Mini Cam	Not Specified	Not Spec	ified	Not Specified	
'own or V	illage:	Kildare Tov	vn	Inspection Direction:	Downstream	Upstream No	de:	MH 4	
Road: Kildare		Kildare		Inspected Length:	0.00 m	Upstream Pip	be Depth:		
Location:				Total Length:	0.00 m	Downstream	Node:	LINE B	
urface Ty	/pe:			Joint Length:		Downstream	Pipe Deptl	า:	
se:					Pipe Shape:	Circular			
ype of Pi	pe:	Gravity drai	in/sewer		Dia/Height:	225 mm			
low Cont	rol:	No flow cor	ntrol		Material:	Polyvinyl chlo	ride		
ear Cons	tructed:	Not Specifi	ed		Lining Type:	No Lining			
nspectior	Purpose:	Sample cor	ndition surve	у	Lining Material:	No Lining			
		osition [m]	Code	Observation			MPEG	Photo	Grad
Dep	1:50 Pe oth: m H 4	osition [m]	Code	Observation			MPEG	Photo	Grad
Dep	oth: m	0.00	Code MH	Observation Start node, manhole,	reference: MH 4		MPEG 00:00:00	Photo MH 4X_16082 024_1451	Grad
Dep	oth: m						-	MH 4X_16082	Grad
Dep	oth: m	0.00	МН	Start node, manhole,	e vertical dimension		00:00:00	MH 4X_16082	Grad
•	oth: m	0.00	MH	Start node, manhole, Water level, 5% of the Water level, 20% of th	e vertical dimension	rea loss	00:00:00	MH 4X_16082	Grac 4

Construction Features Miscellaneous Features										
	00	isii uciion reali	200			IVIISC	enaneous real	uico		
	Structural Defects					Service & Operational Observations				
STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade	
0	0.0	0.0	0.0	1.0	1	5.0	0.0	5.0	4.0	

Kildare Town_ Kildare County Council



MH 4X_16082024_1451_Sec3_Insp1_SA_0m.jpg, 00:00:15, 0.00 m Survey abandoned, Unable to complete survey due to silt in line

McGuiness Maintenance Services Shean, Edenderry

Item No. Insp. No. Date Time Client's Job Ref Weather Pre Cleaned PLR Operator 1008224 14.51 Not Specified Moral Or Chow Not Specified Moral Specified Moral Specified Not Specified Not Specified Moral Specified Moral Specified Moral Specified Moral Specified Town or Village: Kitdare Town Inspecton Direction: Downstream Upstream Pipe Depth: Downstream Node: UNIT Upstream Pipe Depth: Downstream Node: UNIT Use: Total Length: Downstream Node: UNIT Upstream Pipe Depth: Use: No fow control Material: Polymotindinde Unit Var Constructed: Not Specified Moral Off.now Downstream Pipe Depth: Use: No fow control Material: Dol/write Z25 mm Pipe Office: Specified Unit Ingli Material: No Lining Moral Office Recommendations: Scale 150 Position [m] Code Observation Otical: 00.00.00 Start node, mathole.reference: MH 00.00.00 MH Start node, mathole.reference: MH 1 00.00.00 00.00.00 10.00 0.00 SA Survey abar				0000101		10/00/20				
Operator Not Specified Vehicle Not Specified Camera ive D Not Specified Metrative D Not Specified Metrative D Not Specified Town or Village: Kildare Town Inspection Direction: Inspection Direction: Downstream Node: MH 1 Read: Kildare Inspection Direction: Downstream Node: MH 1 Location: Joint Length: Do On Downstream Node: LINE B Surface Type: Joint Length: Downstream Node: LINE B Type of Pipe: Gravity drain/sever Pipe Shape: Circular Type of Pipe: No Row control Material: Polynyl chindre Image Shape: Type of Pipe: Sare to Specified Lining Type: No Lining No Lining Yar Constructed: Not Specified Lining Type: No Lining No Control Sale: 1.50 Position [m] Code Observation MPEG Photo Grade Depth:: mit seedinemous Pentures Sare node, mathele, reference: MH 1 00:00:00 MH 10:00:00 MH 0:0:00 SA		-								
Not Specified Not Specified Not Specified Not Specified Not Specified Town or Village: Kildare Town Inspection Direction: Downstream Upstream Node: M11 Location: Joint Length: 0.00 m Downstream Node: LINE B Joint Length: Joint Length: Downstream Node: LINE B Use: Fipe of Pipe: Gravity drain/sever Pipe Shape: Circular Yaer Constructed: Not Specified Material: Polyticyl choride Yaer Constructed: Not Specified Lining Type: No Lining Kecommendations: Sampetion Purpose: Sampetion Purpose: Sampetion Purpose: MPEG Photo Grade Scale: 1:50 Position [m] Code Observation MPEG Photo Grade Opth:: metric Start node, manhole, reference: MH 1 00:00:00 MH IX 16/02 2 0:00 WL Water level, 5% of the vertical dimension 00:00:00 MH IX 16/02 2 0:00 Sa Survey abandoned: Una										
Town or Village: Kildare Town Road: Inspection Direction: Downstream Upstream Node: MH 1 Road: Kildare Inspection Direction: 0.00 m Upstream Pipe Depth: Unit Surface Type: Joint Length: 0.00 m Downstream Node: LINE E Use: Tool Length: Joint Length: Downstream Node: LINE E Type of Pipe: Growing damksever Dia/Height: 225 mm Flow Control: No flow control Material: No burning Image tool Type: Sample condition survey Lining Type: No Lining Construction Purpose: Sample condition survey Lining Material: No Lining Recommentations: Scale: 1:50 Position [m] Code Observation 00:00:00 MH 1 MH 1 Use: MH 2 Start node, marhole, reference: MH 1 00:00:00 MH 1 1:00:00:00 MH 1 MH 1 Use: Survey abandoned: Unable to complete survey due to meterage chang 00:00:00 00:01:28 MH 2 V Water level. 5% of the ventical dimension 00:00:00 00:01:28 MH 2 0:0:0:0 SA Survey abandoned: Unable to complete survey due to meterage chang 00:01:28 MH 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>•</td><td></td><td></td></td<>							-	•		
Road: Kildare Inspected Length: 0.00 m Upstream Pipe Depth: Surface Type: Joint Length: Downstream Node: LINE B Surface Type: Gravity drain/sewer Pipe Shape: Circular Type of Pipe: Gravity drain/sewer Pipe Shape: Circular Flow Control: No flow control Material: Poly/wing/chloride Vear Construction Purpose: Sample condition survey Lining Type: No Lining Construction Purpose: Sample condition survey Lining Material: No Lining Construction Purpose: Sample condition survey Lining Type: No Lining Construction Purpose: Sample condition survey Lining Material: No Lining Grade MH Start node, manhole, reference: MH 1 00:00:00 MH VL Water level, 5% of the vertical dimension 00:00:00 02:1:431 0.00 SA Survey shanchoret: Unable to complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not	Not S	Specified	Not	Specified	Mini Cam	Not Speci	fied	Not Specified	Not	Specified
Road: Kildare Inspected Length: 0.00 m Upstream Pipe Depth: Surface Type: Joint Length: Downstream Node: LINE B Surface Type: Gravity drain/sewer Pipe Shape: Circular Type of Pipe: Gravity drain/sewer Pipe Shape: Circular Flow Control: No flow control Material: Poly/wing/chloride Vear Construction Purpose: Sample condition survey Lining Type: No Lining Construction Purpose: Sample condition survey Lining Material: No Lining Construction Purpose: Sample condition survey Lining Type: No Lining Construction Purpose: Sample condition survey Lining Material: No Lining Grade MH Start node, manhole, reference: MH 1 00:00:00 MH VL Water level, 5% of the vertical dimension 00:00:00 02:1:431 0.00 SA Survey shanchoret: Unable to complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not complete survey due to not	Town or V	/illage:	Kildare T	own	Inspection Direction	Downstream	Up	stream Node:	MH [·]	1
Location: Total Length: 0.00 m Downstream Node: LINE B Joint Length: Joint Length: Downstream Node: LINE B Surface Type: Gravity drain/sewar Pipe Shape: Circular Type of Pipe: Gravity drain/sewar Dia/Height: 225 mm Flow Control: No file: Dia/Height: 225 mm Imagection Purposes: Sample condition survey Lining Type: No Lining Comment: Recommendations: Scale: 1:50 Photo Grade Depth:: 0.00 MH Start node, manhole, reference: MH 1 00:00:00 MH M11 0.00 VL Water level: 5% of the vartical dimension 00:01:28 MH M11 0.00 VL Water level: 5% of the vartical dimension 00:01:28 MH M11 0.00 VL Water level: 5% of the vartical dimension 00:01:28 MH M11 0.00 VL Water level: 5% of the vartical dimension 00:01:28 MH M11 0.00 VL Water level: 5% of the vartical dimension 00:01:28 MH M12 0.00 SA Survey abandoned: Unable to determind length due to no 00:01:28 MH M15 Serv					-		-			
Surface Type: Joint Length: Ownstream Pipe Depth: Use: Pipe Shape: Circular Vige of Pipe: Gravity drain/sever Dia/Height: 225 mm Flow Control: No flow control Material: Polyung/chorde Inspection Purpose: Sample condition survey Lining Type: No Lining Construction Survey Lining Material: No Lining Metrial: Recommendations: Scale: 1:50 Position [m] Code Observation MPEG Photo Grade peth:::n MH Start node, manhole, reference: MH 1 00:00:00 MH X: 10:082 0:0:0:0:0 VL Water level, 5% of the vertical dimension 00:01:28 MH y::: 0:082 0:0:0:0:0 SA Survey abandoned: Unable to determind length due to no 00:0:128 MH y::: 0:082 ME Service & Operational Observations 0:24:1451			Riluare				-			
Use: Crouler Gravity drain/sewar Figure Crouler Dia/Height: 225 mm Figure 225 mm Figure Control: No flow control Material: 225 mm Figure 225 m					-	0.00 m				В
Type of Pipe: Gravity drain/sever Dia/Height: 225 mm Flow Control Material: Polyvivyl choride Tinspection Purpose: Sample condition survey Lining Type: No Lining Comments: Recommendations: Scale MPEG Photo Grade Berketion Purpose: Sample condition survey Lining Material: No Lining Comments: Scale: 150 Position [m] Code Observation MPEG Photo Grade Berketion 0.00 MH Start node, manhole, reference: MH 1 00:00:00 MH 1X, 16082 024, 1451 0.00 VL Water level, 5% of the vertical dimension 00:00:00 MH 1X, 16082 0.00 SA Survey abandoned: Unable to complete survey due to greese on pipe. Unable to determind length due to no 0X, 1602 024, 1451 VE Oconstruction Features Meterial: Service & Operational Observations 024, 1451 STR No. Def STR Peek STR Meek STR Meek STR Total STR Grade STR Total STR Grade SER Meen SER Meen SER Meen SER Meen SER Meen		ype:			Joint Length:		Do	wnstream Pipe I	Depth:	
Flow Control: No flow control Material: Polyvinyl chloride Yaar Constructide: Not Specified Lining Type: Not Lining Impection Purpose: Sample condition survey Lining Material: Not Lining Comments: Recommendations: Secondered to the se	Use:					Pipe Shape:	Cir	cular		
Error Construction In flow control Material: Polyvinyl chloride Var Constructing: No Lining Lining Type: No Lining Impection Propess: Sample condition survey Lining Material: No Lining Comments: Recommendations:	Type of P	'ipe:	Gravity d	rain/sewer		Dia/Height:	22	5 mm		
Year Constructed: Not Specified Lining Type: No Lining Impection Purpose: Sample condition survey Lining Material: Not Lining Comments: Recommendations: MPEG Photo Grade Scale: 1:50 Position [m] Code Observation MPEG Photo Grade Depth: m MH Start node, manhole, reference: MH 1 00:00:00 MH 1X, 16082 024, 1451 0.00 WL Water level, 5% of the vertical dimension 00:00:00 MH 1X, 16082 024, 1451 0.00 SA Survey abandoned: Unable to complete survey due to grees on pic. Unable to determind length due to no 00:01:128 WH Meterage chang Waterlevel, 5% of the vertical dimension 00:01:128 WH View Survey abandoned: Unable to determind length due to no 00:01:128 WH View Survey abandoned: Unable to determind length due to no 00:01:128 WH View Survey abandoned: Unable to determind length due to no 00:01:128 WH Survey Survey Survey Survey Survey Survey Survey			-			-	Po	lvvinvl chloride		
Lining Material: No Lining Commenta: Recommendations: Scale: 1:50 Position [m] Code Observation MPEG Photo Grade Depth: m M1 00:00:00 MH M1 0:00:00 MH Start node, manhole, reference: MH 1 00:00:00 MH 0:00 VL Water level, 5% of the vertical dimension 00:00:00 00:01:28 MH 0:00 SA Survey abandoned: Unable to complete survey due to meterage chang 00:01:28 MH 1:X_16082 0:24_1451 0:24_1451 0:24_1451 0:24_1451 0:00 SA Survey abandoned: Unable to determined length due to no 0:0:01:28 MH 1:X_16082 0:24_1451 0:24_1451 0:24_1451 0:24_1451 0:00 SA Survey abandoned: Unable to determined length due to no 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:										
Comments: MPEG Photo Grade Scale: 1:50 Position [m] Code Observation MPEG Photo Grade Depth:: n MH Start node, manhole, reference: MH 1 00:00:00 MH 1X_16082 024_1451 0.00 WL Water level, 5% of the vertical dimension 00:00:00 MH 1X_16082 024_1451 0.00 SA Survey abandoned: Unable to complete survey due to greese on pipe. Unable to determind length due to no 00:01:28 MH 1X_16082 024_1451 0.00 SA Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X_16082 024_1451 0.00 0.00 SA Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X_16082 0.01 SER Yeak SER Yeak SER Yeak SER Yeak								-		
Recommendations: Scale 1:50 Position [m] Code Observation MPEG Photo Grade Depth: Image: State in the state in t	-	-	e: Sample d	condition surve	ey .	Lining Materia	al: NO	Lining		
Scale: 1:50 Position [m] Code Observation MPEG Photo Grade Depth: m MH 1 0.00 MH Start node, manhole, reference: MH 1 00:00:00 MH 1X, 16082, 0224, 1451 0.00 VL Water level, 5% of the vertical dimension 00:00:00 MH 1X, 16082, 0224, 1451 0.00 SA Survey abandoned: Unable to complete survey due to greese on pipe. Unable to determind length due to no meterage chang 00:01:28 MH 1X, 16022, 0224, 1451 0.00 SA Survey abandoned: Unable to determind length due to no meterage chang 00:01:28, 024, 1451 MH 1X, 16022, 0224, 1451 Structure Defects Miscellaneous Features Structure Defects Structure Defects Structure Defects Structure STR No. Def STR No. Def 0.0 0.0 1.0										
Depth: m MH Start node, manhole, reference: MH 1 00:00:00 MH 0.00 WL Water level, 5% of the vertical dimension 00:00:00 0.00 SA Survey abandoned: Unable to complete survey due to greese on pipe. Unable to determind length due to no 00:01:28 MH 1X.16082 OUL VL Water level, 5% of the vertical dimension 00:01:28 MH 1X.16082 OUL SA Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X.16082 OUL VL Vater level, 5% of the vertical dimension 00:01:28 MH 1X.16082 OUL Sa Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X.16082 OUL Sa Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X.16082 OUL Sa Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X.16082 Survey abandoned: Unable to determind length due to no Survey abandoned: Unable to survey abandoned: Unable to survey abandoned: Unable to survey abandoned: Unable to survey abandoned: Unable to survey abandoned: Unable to survey abandoned: Unable to survey abandoned: Unable to survey abandoned: Unable to survey abandoned: Unable to surv	Recomme	endations	:							
Depth: m MH Start node, manhole, reference: MH 1 00:00:00 MH 0.00 WL Water level, 5% of the vertical dimension 00:00:00 0.00 SA Survey abandoned: Unable to complete survey due to greese on pipe. Unable to determind length due to no 00:01:28 MH 1X.16082 OUL VL Water level, 5% of the vertical dimension 00:01:28 MH 1X.16082 OUL SA Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X.16082 OUL VL Vater level, 5% of the vertical dimension 00:01:28 MH 1X.16082 OUL Sa Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X.16082 OUL Sa Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X.16082 OUL Sa Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X.16082 Survey abandoned: Unable to determind length due to no Survey abandoned: Unable to survey abandoned: Unable to survey abandoned: Unable to survey abandoned: Unable to survey abandoned: Unable to survey abandoned: Unable to survey abandoned: Unable to survey abandoned: Unable to survey abandoned: Unable to survey abandoned: Unable to surv	Scalor	1.50	Position Im	1 Codo	Observation			МВ	EG Bho	to Grado
MH 1 Start node, manhole, reference: MH 1 00.00.00 MH 0.00 VL Water level. 5% of the vertical dimension 00.00.00 0.00 SA Survey abandoned: Unable to complete survey due to 0 00.01.28 MH greese on pipe. Unable to determind length due to no 00.01.28 MH TX 16082 024_1451 024_1451	Scale.	1.50	Fosition [m] Code	Observation			IVIE	EG Pho	lo Grade
0.00 MH Start node, manhole, reference: MH 1 00:00:00 MH 12.1002 024_1451 00:00:00 0.00 SA Survey abandoned: Unable to complete survey due to 00:01:28 MH 12.1002 0.00 SA Survey abandoned: Unable to determined length due to no 0:01:28 MH 12.1002 0.00 SA Survey abandoned: Unable to determined length due to no 0:02:28 MH 12.1002 0.00 SA Survey abandoned: Unable to determined length due to no 0:02:4_1451 0.11 0.00 SA Survey abandoned: Unable to determined length due to no 0:02:4_1451 0.11 SER No. Def STR No. Def STR Peak STR No.a STR Total STR Total STR Total SER No. Def SER No.a	De	pth: m								
0.00 WL Water level, 5% of the vertical dimension 00:00:00 0.00 SA Survey abandoned: Unable to complete survey due to greese on pipe. Unable to determind length due to no 0:01:28 NH 1X. 16:082 0:024_1451 0:00:01:28 NH 1X. 16:082 0.00 SA Survey abandoned: Unable to determind length due to no 0:01:28 NH 1X. 16:082 0:24_1451 0:24_1451 0:24_1451 Miscellaneous Features Structural Detects	M	1H 1								
0.00 WL Water level, 5% of the vertical dimension 00:00:00 0.00 SA Survey abandoned: Unable to complete survey due to greese on pipe. Unable to determind length due to no 0:01:28 NH 1X. 16:082 0:024_1451 0:00:01:28 NH 1X. 16:082 0.00 SA Survey abandoned: Unable to determind length due to no 0:01:28 NH 1X. 16:082 0:24_1451 0:24_1451 0:24_1451 Miscellaneous Features Structural Detects		\frown								
0.00 WL Water level, 5% of the vertical dimension 00:00:00 0.00 SA Survey abandoned: Unable to complete survey due to greese on pipe. Unable to determind length due to no 0:01:28 NH 1X. 16:082 0:024_1451 0:00:01:28 NH 1X. 16:082 0.00 SA Survey abandoned: Unable to determind length due to no 0:01:28 NH 1X. 16:082 0:24_1451 0:24_1451 0:24_1451 Miscellaneous Features Structural Detects										
0.00 WL Water level, 5% of the vertical dimension 00:00:00 0.00 SA Survey abandoned: Unable to complete survey due to greese on pipe. Unable to determind length due to no 00:01:28 MH 1X, 16082 0.00 SA Survey abandoned: Unable to determind length due to no 00:01:28 VH 1X, 16082 024_11451 024_11451 024_11451 Miscellaneous Features: Structural Defects Service & Operational Observations Structural Defects Service & Structural Defects Structural Defects O 0.0 0 0.0 0.0 0.0 1.0			0.00	MH	Start node, manhole	, reference: MH 1	l	00:0	0:00 MH	
0.00 WL Water level, 5% of the vertical dimension 00:00:00 0.00 SA Survey abandoned: Unable to complete survey due to greese on pipe. Unable to determind length due to no 00:01:28 MH 1X_16082 0.00 0.00 SA Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X_16082 0.01 0.01 ST Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X_16082 0.01 0.01 SA Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X_16082 0.01 0.01 SA Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X_16082 0.01 ST Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X_16082 0.01 ST Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X_16082 0.02 Survey abandoned: Survey abandoned: Unable to determind length due to no Survey abandoned: Survey abandoned: Survey abandoned: Survey abandoned: Survey abandoned: Survey abandoned: Survey abandoned: Survey abandoned: Survey abandoned: Survey abandoned: Survey abandoned: Survey abandoned: Survey abandoned: Survey abandoned: Survey abandoned: Survey abandoned: Survey abandoned: Survey abandoned: Survey abandone: Survey abandoned: Survey abandoned: Survey abandoned:		N								
0.00 SA Survey abandoned: Unable to complete survey due to meterage chang 00:01:28 MH 1X.15082 024_1451 0.00 SA Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X.15082 024_1451 0.00 SA Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X.15082 024_1451 0.00 SA Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X.15082 024_1451 0.00 SA Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X.15082 024_1451 0.00 SA Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X.15082 024_1451 0.01 Sa Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X.15082 024_1451 0.01 Sa Survey abandoned: Unable to determind length due to no 00:01:28 MH 1X.15082 024_1451 0.02 Sa Sa Sa Sa Sa 0.01 Sa Sa Sa Sa Sa 0.02 Sa Sa Sa Sa Sa Sa		\backslash								451
greese on pipe. Unable to determind length due to no 1X,16082 meterage chang 024_1451			0.00	WL	Water level, 5% of th	ne vertical dimens	sion	00:0	0:00	
greese on pipe. Unable to determind length due to no 1X,16082 meterage chang 024_1451		\backslash								
greese on pipe. Unable to determind length due to no 1X,16082 meterage chang 024_1451	1		0.00	54	Survey abandoned:	Upoble to comple	to our ou du	in the 0.010	1.00 ML	
meterage chang 024_1451 Structure Miscellaneous Features Structure Structural Defects Service & Operational Observations Structures STR No. Def STR Peak STR No. Def SER Peak SER Total SER Grade 0 0.0 0.0 1.0 0 0.0 0.0 1.0				SA						
Miscellaneous Features Structural Defects Structural Defects STR No. Def STR Peak STR Mean STR Crade STR Vo. Def SER Peak SER Foral SER Grade 0 0.0 <								110		
Structural Defects Service & Operational Observations STR No. Def STR Peak STR Mean STR Total STR Grade SER No. Def SER Peak SER Mean SER Grade 0 0.0 0.0 0.0 1.0 0 0.0 0.0 1.0					inclosedge chang				02.2.	
Structural Defects Service & Operational Observations STR No. Def STR Peak STR Mean STR Total STR Grade SER No. Def SER Peak SER Mean SER Grade 0 0.0 0.0 0.0 1.0 0 0.0 0.0 1.0										
Structural Defects Service & Operational Observations STR No. Def STR Peak STR Mean STR Total STR Grade SER No. Def SER Peak SER Mean SER Grade 0 0.0 0.0 0.0 1.0 0 0.0 0.0 1.0										
STR No. DefSTR PeakSTR MeanSTR TotalSTR GradeSER No. DefSER PeakSER MeanSER TotalSER Grade00.00.00.01.000.00.01.0										
0 0.0 0.0 0.0 1.0 0 0.0 0.0 1.0							Service &			
Kildare Town_ Kildare County Council 7	-				0.0 1.0	0	0.0	0.0	0.0	
	Kildare To	wn_ Kilda	re County Co	ouncil						7

Survey abandoned, Unable to complete survey due to greese on pipe. Unable to determind length due to no meterage chang

WinCan

McGuiness Maintenance Services Shean, Edenderry

			Sectio	on Insp	ection -	20/08/20)24 - I	_ine AX			
Item No. 5	Insp. No	Date 20/08/2	Time 4 16:50		s Job Ref	Weathe No Rain Or	-	Pre Clea Not Spec			PLR NE AX
Оре	erator	\	/ehicle	С	amera	Preset Le	ngth	Legal Sta	atus	Alter	native ID
Not S	pecified	Not	Specified	Mi	ni Cam	Not Speci	ified	Not Spec	cified	Not S	Specified
Town or V	/illage:	Kildare 7	Town	Inspection	on Direction:	Upstream		Upstream No	de:	LINE	A
Road:		Kildare		-	d Length:	0.00 m		Upstream Pip	-		
Location:				Total Le	0	0.00 m		Downstream		MH 1	
Surface T	ype:			Joint Le	ngth:	D: 01		Downstream	Pipe Dept	h:	
Use: Type of P	inci	Crowity	drain/aguar			Pipe Shape:		Circular 225 mm			
Type of P Flow Con	-	No flow	drain/sewer			Dia/Height: Material:		Polyvinyl chlo	rido		
Year Con		Not Spe				Lining Type:		No Lining	nue		
	n Purpose	•	condition su	rvev		Lining Materia	al:	No Lining			
Comment	-	- eample									
Recomme	endations:										
Scale:	1:50 l	Position [n	n] Coo	le Observ	vation				MPEG	Photo	Grade
M		0.00	MH	I Start no	ode, manhole,	reference: MH ⁻	1		00:00:00	Line AX_200	
		0.00	WL	- Water I	evel, 5% of the	e vertical dimen	sion		00:00:00	024_16	50
1		0.00	D	Deform	ed sewer or d	ain, 5%: Unable	e to deter	mind distance	00:00:11	Line AX_200 024_16	
		<u>0.00</u>	D	Deform distanc		ain, 10%: Unat	ole to dete	ermind	00:00:18	Line AX_ed1 028-547	2/3 b6
		\ <u>0.00</u>	D	Deform distanc		rain, 10%: Unat	ole to dete	ermind	00:00:28	Line AX_647 9a3-9dt	
		\ <u>0.00</u>	WL		evel, 10% of th ind distance	ne vertical dime	nsion: Un	able to	00:00:46	Line AX_200 024_16	
		0.00	D	Deform distanc		rain, 10%: Unat	ole to dete	ermind	00:01:39	Line AX_c51 3d6-db0	
		0.00	WL		evel, 25% of th ind distance	ne vertical dime	nsion: Un	able to	00:01:45	Line AX_e63 ec3-42f	3a
		0.00	WL		evel, 5% of the ind distance	e vertical dimen	sion: Una	ble to	00:01:57	Line AX_8e3 872-70a	
		0.00	WL		evel, 15% of th ind distance	ne vertical dime	nsion: Un	able to	00:03:33	Line AX_cbc 6fb-187	
		0.00	OB		50% cross-se	uding through vectional area los			00:04:24	Line AX_200 024_16	5 182
		0.00	В		pipe from 10 o ind distance	o'clock to 2 o'clo	ock: Unab	le to	00:05:08	Line AX_200 024_16	4 182
		0.00	SA		abandoned: L ind distance	Inable to comple	ete survey	v. Unable to	00:05:30	Line AX_200 024_16	82
			ction Featur					Miscellaneous	Features		
			ural Defects			CED No. Def		e & Operation			
STR No. E 5	Def STR		FR Mean 0.0	STR Total 140.0	STR Grade 4.0	SER No. Def 5	SER Pe 17.0	ak SER Me		R Total 7.0	SER Grade 5.0

Kildare Town_ Kildare County Council

Contractor`s Job Ref

Shean, Edenderry

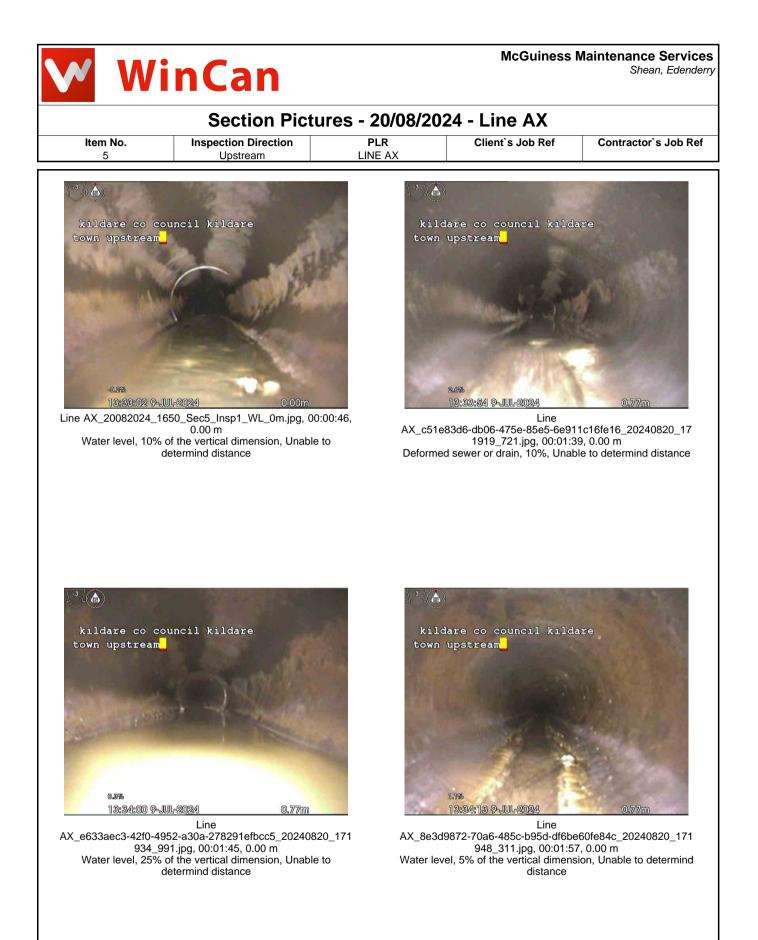
McGuiness Maintenance Services

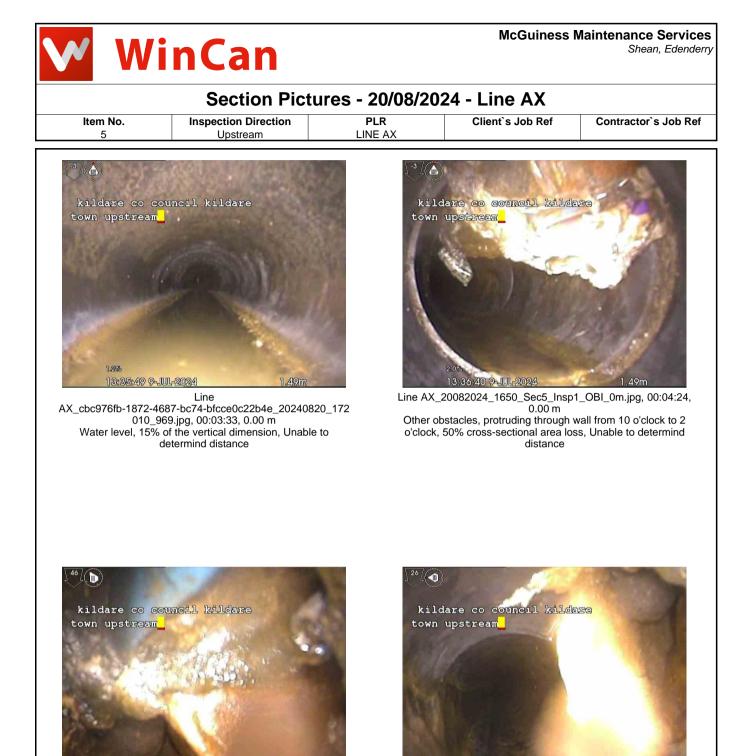
kildare co council kildare town upstream

Line AX_20082024_1650_Sec5_Insp1_D_0m.jpg, 00:00:11, 0.00 m Deformed sewer or drain, 5%, Unable to determind distance

Line AX_ed1b6028-5474-4215-83a9-41bf159f7d4e_20240820_171 844_818.jpg, 00:00:18, 0.00 m Deformed sewer or drain, 10%, Unable to determind distance

Line AX_6473e9a3-9db9-4550-ad29-d708b40861ce_20240820_17 1854_459.jpg, 00:00:28, 0.00 m Deformed sewer or drain, 10%, Unable to determind distance


0.0%


13:32:15 9-JUL-2024

Line AX_20082024_1650_Sec5_Insp1_MH_0m.jpg, 00:00:00,

0.00 m

Start node, manhole, reference: MH 1

13:37:47 9-JUL-2024

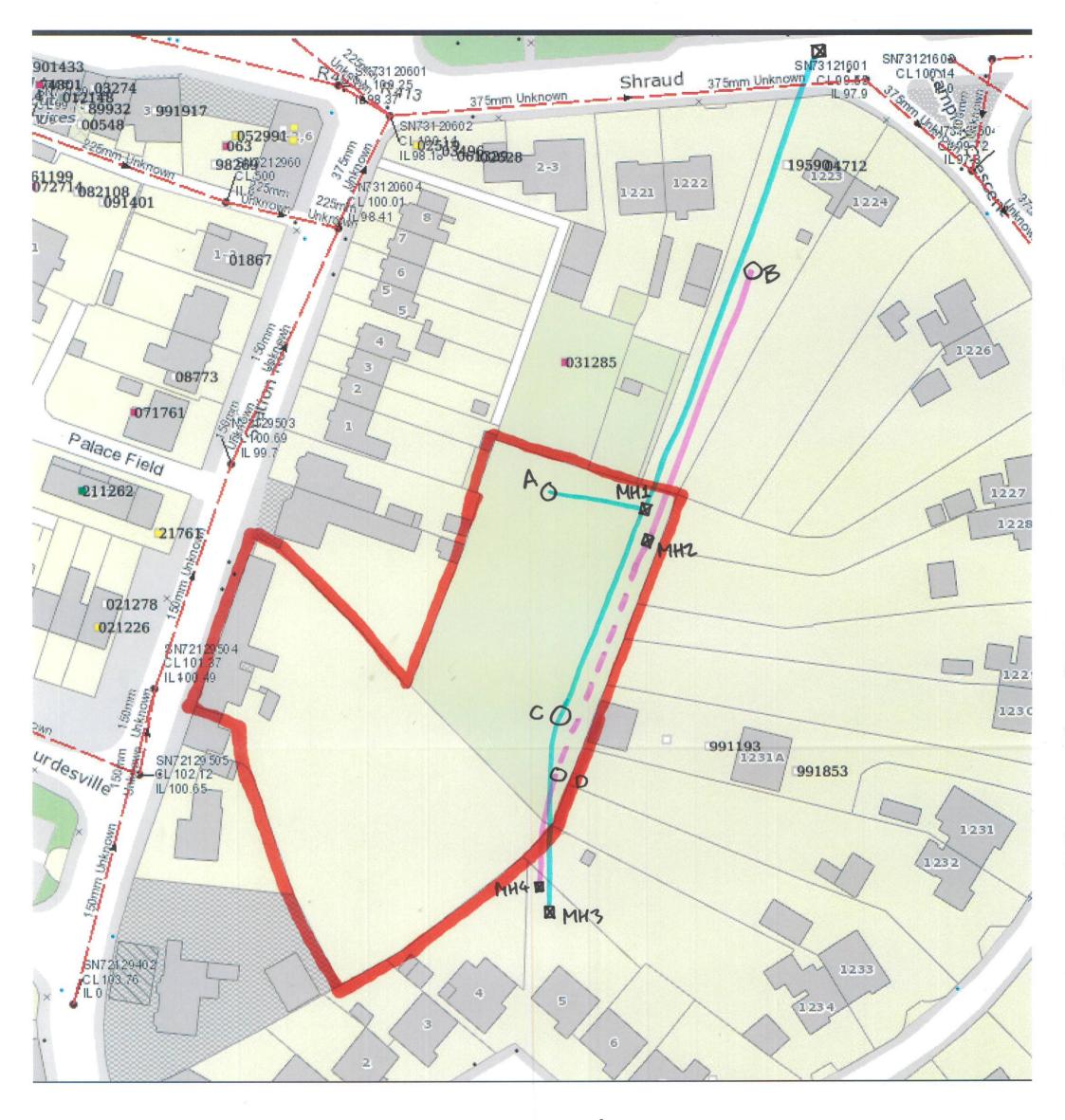
Line AX_20082024_1650_Sec5_Insp1_SA_0m.jpg, 00:05:30,

0.00 m

Survey abandoned, Unable to complete survey. Unable to

determind distance

3.1%


13:37:25 9-JUL-2024

Line AX_20082024_1650_Sec5_Insp1_B_0m.jpg, 00:05:08,

0.00 m

Broken pipe from 10 o'clock to 2 o'clock, Unable to determind

distance

Appendix E – UKSuDS Greenfield Runoff Calculation

www.uksuds.com | Storage estimation tool

Calculated by:	Jamie Cullen	Site Deta	ails		
Site name:	An Triantán	Latitude:	53.15863° N		
Site location:	Kildare	Longitude:	6.90868° W		
normal	n of the storage volume requirement				
management or developments",	ia in line with Environment Agency gu SC030219 (2013), the SuDS Manual C7(tandards for SuDS (Defra, 2015), it is u	3 (Ciria, 2015) and Reference:	3052924632		

0.495

0.495

0.495

0.5

0.5

30

0

design of drainage systems. It is recommended that hydraulic modelling software is used calculate

volume requirements and design details before finalising the design of the drainag scheme.

Site characteristics

Area positively drained (ha):

Impermeable area (ha):

Significant public open space (ha):

Total site area (ha):

to	
ge	

Date:

IH124 Calculate from SPR and SAAR Calculate from SOIL type

Oct 31 2023 16:33

Edited				
3				
0.37				

	Default	Edited
	Derault	
		61
		73
or:	1	1
	838	868
):	17	17
	0.3	0.3
	12	12
r.	0.85	0.85
ar.	1.72	1.72
ear:	2.13	2.13
	2.61	2.61
s):	1.11	1.83

Percentage of drained area that is impermeable 100 (%): 0 Impervious area drained via infiltration (ha): Return period for infiltration system design 10 (year): Impervious area drained to rainwater harvesting 0 (ha): Return period for rainwater harvesting system 10 (year): 66

Compliance factor for rainwater harvesting system (%):

Net site area for storage volume design (ha):

Net impermable area for storage volume design (ha):

Pervious area contribution to runoff (%):

* where rainwater harvesting or infiltration has been used for managing surface water runoff such that the effective impermeable area is less than 50% of the 'area positively drained', the 'net site area' and the estimates of Q_{BAR} and other flow rates will have been reduced accordingly.

Design criteria

Climate change allowance factor.

Methodology

QBAR estimation

SPR estimation method:

esti

method:

Soil characteristics SOIL type: SPR: Hydrological characteristics Rainfall 100 yrs 6 hrs: Rainfall 100 yrs 12 hrs: FEH / FSR conversion facto SAAR (mm):

M5-60 Rainfall Depth (mm):

'r' Ratio M5-60/M5-2 day:

Hydological region:

Growth curve factor 1 year Growth curve factor 10 yea Growth curve factor 30 ye

Growth curve factor 100 years:

Q_{BAR} for total site area (l/s

Urban creep allowance factor:	1.1		Q _{BAR} for net site area (I/s):	1.11	1.83
Volume control approach	Flow control or Qbar	to max of 2 l/s/ha	à		J L
Interception rainfall depth (mm):	5				
Minimum flow rate (l/s):	2				
Site discharge rates	Default	Edited	Estimated storage volumes	Default	Edited
1 in 1 year (l/s):	2	2	Attenuation storage 1/100	398	398

1 in 1 year (l/s):	2	2	years (m³):		
1 in 30 years (l/s):	2	2	Long term storage 1/100 years (m³):	0	0
1 in 100 year (l/s):	2	2	Total storage 1/100 years (m³):	398	398

This report was produced using the storage estimation tool developed by HRWallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of these data in the design or operational characteristics of any drainage scheme.

Appendix F – Met Éireann Site Rainfall Data

Met Eireann Return Period Rainfall Depths for sliding Durations Irish Grid: Easting: 272990, Northing: 212574,

	Interval						Years								
DURATION	6months, lyear,	2,	З,	4,	5,	10,	20,	30,	50,	75,	100,	150,	200,	250,	500,
5 mins	2.6, 3.5,	4.0,	4.7,	5.2,	5.5,	6.7,	8.0,	8.9,	10.1,	11.1,	11.9,	13.1,	14.1,	14.9,	N/A ,
10 mins	3.6, 4.9,	5.6,	6.5,	7.2,	7.7,	9.4,	11.2,	12.4,	14.1,	15.5,	16.6,	18.3,	19.6,	20.7,	N/A ,
15 mins	4.2, 5.7,	6.5,	7.7,	8.5,	9.1,	11.0,	13.2,	14.6,	16.5,	18.2,	19.6,	21.6,	23.1,	24.4,	N/A ,
30 mins	5.6, 7.5,	8.5,	9.9,	10.9,	11.6,	14.0,	16.6,	18.3,	20.6,	22.6,	24.2,	26.5,	28.3,	29.8,	N/A ,
1 hours	7.4, 9.8,	11.0,	12.8,	14.0,	14.9,	17.7,	20.9,	22.9,	25.6,	28.0,	29.9,	32.7,	34.8,	36.5,	N/A ,
2 hours	9.7, 12.7,	14.2,	16.4,	17.9,	19.0,	22.5,	26.2,	28.6,	31.9,	34.8,	36.9,	40.2,	42.7,	44.7,	N/A ,
3 hours	11.5, 14.9,	16.6,	19.1,	20.7,	21.9,	25.8,	30.0,	32.7,	36.3,	39.4,	41.8,	45.4,	48.1,	50.4,	N/A ,
4 hours	12.9, 16.6,	18.5,	21.2,	22.9,	24.3,	28.5,	33.0,	35.9,	39.8,	43.1,	45.7,	49.5,	52.4,	54.8,	N/A ,
6 hours	15.2, 19.4,	21.5,	24.5,	26.5,	28.0,	32.7,	37.7,	40.9,	45.2,	48.9,	51.7,	55.9,	59.1,	61.7,	N/A ,
9 hours	17.8, 22.6,	25.0,	28.5,	30.7,	32.4,	37.6,	43.2,	46.7,	51.4,	55.5,	58.5,	63.1,	66.6,	69.4,	N/A ,
12 hours	20.0, 25.3,	27.9,	31.6,	34.0,	35.8,	41.5,	47.5,	51.2,	56.3,	60.7,	63.9,	68.8,	72.5,	75.5,	N/A ,
18 hours	23.6, 29.5,	32.5,	36.6,	39.3,	41.4,	47.6,	54.3,	58.4,	64.0,	68.8,	72.4,	77.7,	81.8,	85.0,	N/A ,
24 hours	26.5, 33.0,	36.2,	40.7,	43.6,	45.8,	52.6,	59.7,	64.1,	70.1,	75.2,	79.0,	84.7,	89.0,	92.5,	104.1,
2 days	32.0, 39.2,	42.7,	47.6,	50.7,	53.0,	60.2,	67.7,	72.4,	78.6,	83.8,	87.7,	93.6,	97.9,	101.4,	113.1,
3 days	36.8, 44.6,	48.4,	53.6,	57.0,	59.5,	67.1,	75.1,	79.9,	86.5,	91.9,	96.0,	102.1,	106.6,	110.2,	122.3,
4 days	41.2, 49.5,	53.6,	59.2,	62.7,	65.4,	73.5,	81.8,	86.9,	93.8,	99.5,	103.7,	110.0,	114.7,	118.4,	130.9,
6 days	49.1, 58.5,	63.0,	69.3,	73.2,	76.1,	85.0,	94.1,	99.7,	107.0,	113.2,	117.8,	124.5,	129.5,	133.6,	146.8,
8 days	56.4, 66.7,	71.7,	78.5,	82.7,	85.9,	95.5,	105.3,	111.3,	119.2,	125.7,	130.6,	137.8,	143.1,	147.3,	161.4,
10 days	63.3, 74.5,	79.8,	87.1,	91.6,	95.0,	105.3,	115.7,	122.1,	130.5,	137.4,	142.6,	150.1,	155.7,	160.2,	174.9,
12 days	69.8, 81.8,	87.5,	95.3,	100.1,	103.7,	114.6,	125.6,	132.3,	141.2,	148.5,	153.9,	161.8,	167.7,	172.4,	187.8,
16 days	82.3, 95.8,	102.1,	110.8,	116.2,	120.2,	132.2,	144.3,	151.7,	161.3,	169.3,	175.2,	183.8,	190.2,	195.2,	211.8,
20 days	94.3, 109.0,	116.0,	125.5,	131.4,	135.7,	148.8,	161.9,	169.8,	180.2,	188.8,	195.2,	204.4,	211.2,	216.6,	234.4,
25 days	108.6, 125.0,	132.6,	143.0,	149.5,	154.2,	168.5,	182.8,	191.4,	202.7,	212.0,	218.8,	228.8,	236.1,	242.0,	261.0,
NOTES:		-													

N/A Data not available

These values are derived from a Depth Duration Frequency (DDF) Model

For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

Appendix G – Surface Water Network Calculations

An Triantan:	Date:		1	
Kildare Town	19/12/2024			
Co. Kildare	Designed by:	Checked by:	Approved By:	
	СН	JC	JC	
Report Details:	Cundall:			
Type: Inflows	2 Dawson Stre	et		
Storm Phase: Phase	Dublin			
SW3.0 Zone D Units				Type : Catchment Area
Area (ha)	0.067			
	0.001			
Dynamic Sizing Runoff Method Time of Summer Volumetric Runoff Winter Volumetric Runoff Time of Concentration (mins) Percentage Impervious (%)	of Concentration 0.950 0.950 5 100	applied as follow areas:	off Coefficient (Cv) is to the catchment as (including roofs);	
SW3.0 Footway & Landscape		- 0.9 to road area proposed but rat guidance docum	as (porous carriageway e as set in KCC lents);	Type : Catchment Area
Area (ha)	0.037		ng areas (porous	
Dynamic Sizing Runoff Method Time of Summer Volumetric Runoff Winter Volumetric Runoff Time of Concentration (mins)	of Concentration 0.300 0.300 5	assumed as a su infiltration on site Investigations) - 0.3 to landscap	n parking areas and ufficient rate given the e from the Ground be areas and surrounding ned sufficient rate given a from GI)	
Percentage Impervious (%)	100			
r ercentage impervious (70)	100			

SW1.0 Zone A1 Units

Area (ha)

0.033

Time of Concentration
0.950
0.950
5
100

SW1.0 Zone A2 Unit

Area (ha)

0.011

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.950
Winter Volumetric Runoff	0.950
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Type : Catchment Area

An Triantan: Kildare Town	Date: 19/12/2024			
Co. Kildare	Designed by:	Checked by:	Approved By:	
	СН	JC	JC	
Report Details:	Cundall:			
Type: Inflows	2 Dawson Stre	et		
Storm Phase: Phase	Dublin			

0.022

SW1.0 Access Road

Type : Catchment Area

Type : Catchment Area

Type : Catchment Area

Area	(ha)
	()

Dynamic Sizing

Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.900
Winter Volumetric Runoff	0.900
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.1 Parking & Landscape

Area (ha)

0.009

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.500
Winter Volumetric Runoff	0.500
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW2.0 Access Road

Area	(ha)
------	------

0.018

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.900
Winter Volumetric Runoff	0.900
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Area (ha)

SW2.0 Storage Areas

0.006

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.950
Winter Volumetric Runoff	0.950
Time of Concentration (mins)	5
Percentage Impervious (%)	100

An Triantan: Kildare Town	Date: 19/12/2024		
Co. Kildare	Designed by:	Checked by:	Approved By:
	СН	JC	JC
Report Details:	Cundall:	•	
Type: Inflows	2 Dawson Stre	et	
Storm Phase: Phase	Dublin		

0.032

SW1.1 Zone B1 Units

Type : Catchment Area

Type : Catchment Area

Area (ha)

Dynamic Sizing

Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.950
Winter Volumetric Runoff	0.950
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.2 Zone B2 Unit

Area (ha)

0.019

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.950
Winter Volumetric Runoff	0.950
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.3 Zone C1 Units

Area (ha)

0.076

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.950
Winter Volumetric Runoff	0.950
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.4 Zone C2 Units

Area (ha)

0.025

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.950
Winter Volumetric Runoff	0.950
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Type : Catchment Area

An Triantan:	Date:			
Kildare Town	19/12/2024	19/12/2024		
Co. Kildare	Designed by:	Checked by:	Approved By:	
	СН	JC	JC	
Report Details:	Cundall:			
Type: Inflows	2 Dawson Stre	2 Dawson Street		
Storm Phase: Phase	Dublin			

0.022

SW1.5 Zone C3 Units

Type : Catchment Area

Type : Catchment Area

Type : Catchment Area

Area (ha)

Dynamic Sizing

Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.950
Winter Volumetric Runoff	0.950
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.4 Parking

Area (ha)

0.012

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.500
Winter Volumetric Runoff	0.500
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.1 Landscape Area

ha)

0.013

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.300
Winter Volumetric Runoff	0.300
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.3 Landscape Area

Area (ha)

0.023

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.300
Winter Volumetric Runoff	0.300
Time of Concentration (mins)	5
Percentage Impervious (%)	100

An Triantan: Kildare Town	Date: 19/12/2024			
Co. Kildare	Designed by:	Checked by:	Approved By:	
	СН	JC	JC	
Report Details:	Cundall:	Cundall:		
Type: Inflows	2 Dawson Stree	2 Dawson Street		
Storm Phase: Phase	Dublin	Dublin		

SW1.4 Landscape Area

Type : Catchment Area

Area (ha)

0.003

Dynamic Sizing

Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.300
Winter Volumetric Runoff	0.300
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.5 Access Road

Area (ha)

0.008

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.900
Winter Volumetric Runoff	0.900
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Tank - Courtyard Area

0.06

Dynamic Sizing	

Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.900
Winter Volumetric Runoff	0.900
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Type : Catchment Area

An Triantan:								
Kildare Town			19/12/2024 Designed by:	Checked by:	Approv	od Pvr		
Co. Kildare			CH	JC	JC	eu by.		
Report Details:			Cundall:	JC	JC			
Type: Junctions			2 Dawson Stree	et				
Storm Phase: Phase		1	Dublin					
Name	Junction Type	Easting (m)	Northing (m)	Cover Level (m)	Depth (m)	Invert Level (m)	Chamber Shape	Diameter (m)
SW2.0	Manhole	672966.750	712577.945	101.660	2.168	99.492	Circular	1.200
SW1.5	Manhole	672979.317	712573.247	101.695	2.420	99.275	Circular	1.200
SW1.1	Manhole	672952.899	712583.334	101.585	1.371	100.214	Circular	1.200
SW1.0	Manhole	672936.565	712588.998	101.510	1.210	100.300	Circular	1.200
SW1.6	Manhole	672984.361	712586.505	101.690	2.462	99.228	Circular	1.200
SW3.0	Manhole	672985.769	712604.925	101.790	2.030	99.760	Circular	1.200
SW3.1	Manhole	673003.370	712598.465	101.790	2.340	99.450	Circular	1.200
SW1.2	Manhole	672960.564	712561.109	101.380	1.284	100.096	Circular	1.200
SW1.3	Manhole	672963.298	712557.548	101.365	1.666	99.699	Circular	1.200
SW1.4	Manhole	672975.697	712566.005	101.500	2.110	99.390	Circular	1.200
Name	Lock	1						
SW2.0	None							
SW1.5	None	1						
SW1.1	None							
SW1.0	None	1						
SW1.6	None							
SW3.0	None	1						
SW3.1	None							
SW1.2	None]						
SW1.3	None							
SW1.4	None]						

Date:			
19/12/2024			
Designed by:	Checked by:	Approved By:	
CH	JC	JC	
Cundall:			
2 Dawson Stre	et		
Dublin			
	19/12/2024 Designed by: CH Cundall: 2 Dawson Stre	19/12/2024 Designed by: Checked by: CH JC Cundall: 2 Dawson Street	19/12/2024 Designed by: Checked by: CH JC Cundall: 2 Dawson Street

MC3500

Type : Chamber

-		
Dimensions		
Exceedance Level (m)	100.83	0
Depth (m)	2.04	
Base Level (m)	98.77	2
Number of Chambers		9
Number of Rows		8
Distance Between Rows (mm)	15	0
Total Volume (m ³)	184.53	4
Chamber Shape		
Туре	Parabolic Arch Chamber	
Chamber Length (m)	2.184	
Wall Thickness (mm)	50	
Diameter / Base Width (mm)	1956	
Height (mm)	1143	
Embedded Parameters		
Porosity (%)	1	40
Height Above (m)	0.4	
Height Below (m)	0.4	
Sides (m)	0.4	
Ends (m)	0.3	
	0.1	50
Outlets		
Outlet		
Outgoing Connection	(None)	
Outlet Type	Filtration	
Permeability Coefficient (m/hr)	0.757	
Safety Factor	10.000	
Bed Depth (m)	0.450	
Area (m ²)	100.00	
Invert Level (m)	98.772	
· ·		
Advanced		
Base Infiltration Rate (m/hr)	0.3	
Side Infiltration Rate (m/hr)	0.7	
Safety Factor	10	0.0

An Triantan:				Date:					
Kildare Town Co. Kildare Report Details: Type: Inflow Summary Storm Phase: Phase				19/12/2024 Designed by: Checked by: Approved By: CH JC JC				-	
				CH JC JC Cundall: 2 Dawson Street Dublin					
Inflow Label	Connected To	Flow (L/s)	Runoff Mo	ethod	Area (ha)	Percentage Impervious (%)	Urban Creep (%)	Adjusted Percentage Impervious (%)	Area Analysed (ha)
SW1.0 Access Road	SW1.0		Time of Concentra	ation	0.022	. 100	10	110	0.024
SW1.0 Zone A1 Units	SW1.0		Time of Concentra	ation	0.033	s 100	10	110	0.036
SW1.0 Zone A2 Unit	SW1.0		Time of Concentra	ation	0.011	100	10	110	0.013
SW1.1 Landscape Area	SW1.1		Time of Concentra	ation	0.013	5 100	10	110	0.014
SW1.1 Parking & Landscape	SW1.1		Time of Concentra	ation	0.009	100	10	110	0.010
SW1.1 Zone B1 Units	SW1.1		Time of Concentra	ation	0.032	. 100	10	110	0.035
SW1.2 Zone B2 Unit	SW1.2		Time of Concentra	ation	0.019	100	10	110	0.021
SW1.3 Landscape Area	SW1.3		Time of Concentra	ation	0.023	s 100	10	110	0.026
SW1.3 Zone C1 Units	SW1.3		Time of Concentra	ation	0.076	6 100	10	110	0.083
SW1.4 Landscape Area	SW1.4		Time of Concentra	ation	0.003	s 100	10	110	0.003
SW1.4 Parking	SW1.4		Time of Concentra	ation	0.012	. 100	10	110	0.013
SW1.4 Zone C2 Units	SW1.4		Time of Concentra	ation	0.025	5 100	10	110	0.028
SW1.5 Access Road	SW1.5		Time of Concentra	ation	0.008	100	10	110	0.009
SW1.5 Zone C3 Units	SW1.5		Time of Concentra	ation	0.022	2 100	10	110	0.024
SW2.0 Access Road	SW2.0		Time of Concentra	ation	0.018	s 100	10	110	0.020
SW2.0 Storage Areas	SW2.0		Time of Concentra	ation	0.006	5 100	10	110	0.006
SW3.0 Footway & Landscape	SW3.0		Time of Concentra	ation	0.037	100	10	110	0.041
SW3.0 Zone D Units	SW3.0		Time of Concentra	ation	0.067	⁷ 100	10	110	0.074
Tank - Courtyard Area	MC3500		Time of Concentra	ation	0.060		10	110	0.066
TOTAL		0.0			0.496	3			0.546

Total Contributing Catchment Area including 10% urban creep factor in accordance with KCC guidance documents . . .

An Triantan: Kildare Town		Date: 19/12/2024			
		Designed by:	Checked by:	Approved By:	
Co. Kildare		CH	JC	JC	
Report Details:		Cundall:	10	30	
Гуре: Network Design Criteria	2 Dawson Street				
Storm Phase: Phase		Dublin			
Flow Options		•			
Peak Flow Calculation	(UK) Modified Rat	tional Method			
	(
Win. Time of Entry (mins)		5			
Min. Time of Entry (mins) Max. Travel Time (mins) Pine Ontions		5 30			
Max. Travel Time (mins) Pipe Options					
Max. Travel Time (mins) Pipe Options Lock Slope Options	None Minimise Excavati	30			
Max. Travel Time (mins) Pipe Options Lock Slope Options Design Options	Minimise Excavation	30			
Max. Travel Time (mins) Pipe Options Lock Slope Options Design Options Design Level		30 Dn			
Max. Travel Time (mins) Pipe Options Lock Slope Options Design Options Design Level Min. Cover Depth (m)	Minimise Excavation	30 on 1.200			
Max. Travel Time (mins) Pipe Options Lock Slope Options Design Options Design Level Min. Cover Depth (m) Min. Slope (1:X)	Minimise Excavation	30 Dn			
Max. Travel Time (mins) Pipe Options Lock Slope Options Design Options Design Level Min. Cover Depth (m) Min. Slope (1:X) Max. Slope (1:X)	Minimise Excavation	00 1.200 500.00			
Max. Travel Time (mins) Pipe Options Lock Slope Options Design Options Design Level Min. Cover Depth (m) Min. Slope (1:X)	Minimise Excavation	000 1.200 500.00 40.00			
Max. Travel Time (mins) Pipe Options Lock Slope Options Design Options Design Level Min. Cover Depth (m) Min. Slope (1:X) Max. Slope (1:X) Min. Velocity (m/s)	Minimise Excavation	0n 1.200 500.00 40.00 1.0			

Apply Offset

An Triantan:	Date:			
Kildare Town	19/12/2024			
Co. Kildare	Designed by:	Checked by:	Approved By:	
	СН	JC	JC	
Report Details:	Cundall:		•	
Type: Rainfall Analysis Criteria	2 Dawson Stree	et		
	Dublin			
Runoff Type	Dynamic			
Output Interval (mins)	5			
Time Oten	Chartaat			

Output Interval (mins)	5
Time Step	Shortest
Urban Creep	Apply Global Value
Urban Creep Global Value (%)	10
Junction Flood Risk Margin (mm)	300
Perform No Discharge Analysis	

Rainfall	
FSR	
Region	Scotland And Ireland
M5-60 (mm)	14.9
Ratio R	0.281
Summer	✓
Winter	✓

Return Period

Return Period (years)	Increase Rainfall	30% applied for climate
1.0	30.000	change in accordance with KCC guidance documents
100.0	30.000	Rec guidance documents
Storm Durations		

Duration (mins)	Run Time (mins)
15	30
30	60
60	120
120	240
180	360
240	480
360	720
480	960
600	1200
720	1440
960	1920
1440	2880
2160	4320
2880	5760
4320	8640
5760	11520
7200	14400
8640	17280
10080	20160

Type: FSR

An Triantan: Kildare Town	Date: 19/12/2024						
Co. Kildare	Designed by:	Checked by:	Approved By:				
	СН	СН ЈС ЈС					
Report Details:	Cundall:						
Type: Junctions Summary	2 Dawson Stre	2 Dawson Street					
Storm Phase: Phase	Dublin						

FSR: 1 years: Increase Rainfall (%): +30: Critical Storm Per Item: Rank By: Max. Depth

Junction	Storm Event	Cover Level (m)	Invert Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
SW2.0	FSR: 1 years: +30 %: 15 mins: Summer	101.66 0	99.492	99.543	0.051	4.1	0.058	0.000	3.8	1.770	ОК
SW1.5	FSR: 1 years: +30 %: 15 mins: Summer	101.69 5	99.275	99.459	0.184	46.4	0.208	0.000	45.1	22.500	ок
SW1.1	FSR: 1 years: +30 %: 15 mins: Summer	101.58 5	100.21 4	100.328	0.114	18.3	0.129	0.000	17.1	8.127	ок
SW1.0	FSR: 1 years: +30 %: 15 mins: Summer	101.51 0	100.30 0	100.388	0.088	11.5	0.100	0.000	11.1	4.992	ок
SW1.6	FSR: 1 years: +30 %: 15 mins: Summer	101.69 0	99.228	99.403	0.175	45.1	0.198	0.000	43.7	22.475	ок
SW3.0	FSR: 1 years: +30 %: 15 mins: Summer	101.79 0	99.760	99.833	0.073	14.0	0.082	0.000	13.7	6.085	ок
SW3.1	FSR: 1 years: +30 %: 15 mins: Summer	101.79 0	99.450	99.515	0.065	13.7	0.073	0.000	13.2	6.080	ок
SW1.2	FSR: 1 years: +30 %: 15 mins: Summer	101.38 0	100.09 6	100.227	0.131	20.4	0.148	0.000	19.3	9.552	ок
SW1.3	FSR: 1 years: +30 %: 15 mins: Summer	101.36 5	99.699	99.846	0.147	34.1	0.166	0.000	32.6	15.941	ОК
SW1.4	FSR: 1 years: +30 %: 15 mins: Summer	101.50 0	99.390	99.553	0.163	38.4	0.184	0.000	37.3	18.434	ОК

Summary:

For the 1yr return period; +30% climate change; 15mins. - 10080mins there is no surcharging or surface flooding on the site.

The top water level in the attenuation chamber has been compared to the physical chamber invert / crown levels as follows:

	Invert Level (m)	Crown Level (m)	Top of Water Level (m)
MC-3500 Stormtech	98.772	100.820	99.384

An Triantan: Kildare Town	Date: 19/12/2024						
Co. Kildare	Designed by:	Checked by:	Approved By:				
	СН	CH JC JC					
Report Details:	Cundall:	•	•				
Type: Junctions Summary	2 Dawson Stre	2 Dawson Street					
Storm Phase: Phase	Dublin						

FSR: 30 years: Increase Rainfall (%): +30: Critical Storm Per Item: Rank By: Max. Depth

Junction	Storm Event	Cover Level (m)	Invert Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
SW2.0	FSR: 30 years: +30 %: 240 mins: Summer	101.66 0	99.492	99.942	0.450	2.9	0.509	0.000	2.9	11.232	Surcharged
SW1.5	FSR: 30 years: +30 %: 240 mins: Summer	101.69 5	99.275	99.942	0.667	36.0	0.755	0.000	34.2	143.317	Surcharged
SW1.1	FSR: 30 years: +30 %: 15 mins: Summer	101.58 5	100.21 4	100.439	0.226	39.1	0.255	0.000	35.5	18.011	Surcharged
SW1.0	FSR: 30 years: +30 %: 15 mins: Summer	101.51 0	100.30 0	100.466	0.166	25.5	0.188	0.000	23.1	11.065	ОК
SW1.6	FSR: 30 years: +30 %: 240 mins: Summer	101.69 0	99.228	99.942	0.714	34.2	0.808	0.000	33.3	143.267	Surcharged
SW3.0	FSR: 30 years: +30 %: 240 mins: Summer	101.79 0	99.760	99.942	0.182	10.0	0.206	0.000	10.1	38.665	ОК
SW3.1	FSR: 30 years: +30 %: 240 mins: Summer	101.79 0	99.450	99.942	0.492	10.1	0.557	0.000	8.8	38.639	Surcharged
SW1.2	FSR: 30 years: +30 %: 15 mins: Summer	101.38 0	100.09 6	100.317	0.221	42.9	0.250	0.000	42.2	21.180	ОК
SW1.3	FSR: 30 years: +30 %: 15 mins: Summer	101.36 5	99.699	99.951	0.252	74.9	0.285	0.000	72.5	35.354	ОК
SW1.4	FSR: 30 years: +30 %: 240 mins: Summer	101.50 0	99.390	99.943	0.553	30.4	0.625	0.000	29.7	117.298	Surcharged

Summary:

For the 30yr return period; +30% climate change; 15mins. - 10080mins there is some surcharging of the network but there is no surface flooding on the site.

The top water level in the attenuation chamber has been compared to the physical chamber invert / crown levels as follows:

		Invert Level (m)	Crown Level (m)	Top of Water Level (m)	
N	AC-3500 Stormtech	98.772	100.820	99.942	

An Triantan: Kildare Town	Date: 19/12/2024						
Co. Kildare	Designed by:	Checked by:	Approved By:				
	СН	CH JC JC					
Report Details:	Cundall:	•	•				
Type: Junctions Summary	2 Dawson Stre	2 Dawson Street					
Storm Phase: Phase	Dublin						

FSR: 100 years: Increase Rainfall (%): +30: Critical Storm Per Item: Rank By: Max. Depth

Junction	Storm Event	Cover Level (m)	Invert Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
SW2.0	FSR: 100 years: +30 %: 360 mins: Summer	101.66 0	99.492	100.331	0.839	2.9	0.949	0.000	2.5	16.272	Surcharged
SW1.5	FSR: 100 years: +30 %: 360 mins: Summer	101.69 5	99.275	100.331	1.056	35.3	1.194	0.000	34.7	207.515	Surcharged
SW1.1	FSR: 100 years: +30 %: 15 mins: Summer	101.58 5	100.21 4	100.617	0.404	50.1	0.457	0.000	46.9	23.287	Surcharged
SW1.0	FSR: 100 years: +30 %: 15 mins: Summer	101.51 0	100.30 0	100.690	0.390	33.0	0.442	0.000	29.3	14.303	Surcharged
SW1.6	FSR: 100 years: +30 %: 360 mins: Summer	101.69 0	99.228	100.330	1.103	34.7	1.247	0.000	34.2	207.475	Surcharged
SW3.0	FSR: 100 years: +30 %: 360 mins: Summer	101.79 0	99.760	100.331	0.571	9.9	0.646	0.000	9.9	55.987	Surcharged
SW3.1	FSR: 100 years: +30 %: 360 mins: Summer	101.79 0	99.450	100.331	0.881	9.9	0.996	0.000	9.1	55.972	Surcharged
SW1.2	FSR: 100 years: +30 %: 15 mins: Summer	101.38 0	100.09 6	100.388	0.292	56.5	0.330	0.000	55.3	27.392	Surcharged
SW1.3	FSR: 100 years: +30 %: 360 mins: Summer	101.36 5	99.699	100.332	0.633	26.0	0.716	0.000	25.6	146.818	Surcharged
SW1.4	FSR: 100 years: +30 %: 360 mins: Summer	101.50 0	99.390	100.332	0.942	29.6	1.065	0.000	29.2	169.911	Surcharged

Summary:

For the 100yr return period; +30% climate change; 15mins. - 10080mins the entire network is surcharged but no manholes are under flood risk. There is also no surface water flooding evident with the TWL of each manhole around 1m below their respected cover levels.

The top water level in the attenuation chamber has been compared to the physical chamber invert / crown levels as follows:

	Invert Level (m)	Crown Level (m)	Top of Water Level (m)	
MC-3500 Stormtech	98.772	100.820	100.331	

An Triantan: Kildare Town	Date: 19/12/2024		
Co. Kildare	Designed by:	Checked by:	Approved By:
	СН	JC	JC
Report Details:	Cundall:		
Type: Stormwater Controls Summary	2 Dawson Street	t	
Storm Phase: Phase	Dublin		

FSR: 1 years: Increase Rainfall (%): +30: Critical Storm Per Item: Rank By: Max. Avg. Depth

Stormwater Control	Storm Event	Max. US Level (m)	Max. DS Level (m)	Max. US Depth (m)	Max. DS Depth (m)	Max. Inflow (L/s)	Max. Residen t Volume (m³)	Max. Flood ed Volum e (m ³)	Total Lost Volume (m³)	Max. Outflo w (L/s)	Total Discharg e Volume (m ³)	Percentage Available (%)	Status
MC3500	FSR: 1 years: +30 %: 240 mins: Summer	99.384	99.384	0.612	0.612	26.0	50.589	0.000	25.390	5.0	75.028	72.586	ок

Summary:				
		inge; 15mins 10080mi er invert / crown levels a	ns the top water level in the a s follows:	ttenuation chamber
MC-3500 Stormtech	Invert Level (m) 98.772	Crown Level (m) 100.820	Top of Water Level (m) 99.384	Depth of Water (m) 0.612

An Triantan: Kildare Town	Date: 19/12/2024		
Co. Kildare	Designed by:	Checked by:	Approved By:
	CH	JC	JC
Report Details:	Cundall:		
Type: Stormwater Controls Summary	2 Dawson Street	t	
Storm Phase: Phase	Dublin		

FSR: 30 years: Increase Rainfall (%): +30: Critical Storm Per Item: Rank By: Max. Avg. Depth

Max. Total Max. Max. Max. Max. Max. Total Discharg Max. Flood Max. Percentage Residen Stormwater US DS US DS Lost Storm Event Inflow ed Outflo е Available Status Control Level Level Depth Depth t Volume Volume Volum (%) w (L/s) Volume (L/s) (m) (m) (m) (m) (m³) (m³) e (m³) (m³) FSR: 30 years: MC3500 +30 %: 240 99.942 99.942 1.170 1.170 49.3 120.122 0.000 41.831 7.6 148.231 34.906 OK mins: Summer

Summary:

For the 30yr return period; +30% climate change; 15mins. - 10080mins the top water level in the attenuation chamber has been compared to the physical chamber invert / crown levels as follows:

MC-3500 Stormtech

Invert Level (m) 98.772 Crown Level (m) 100.820 Top of Water Level (m) 99.942 Depth of Water (m) 1.170

^{An Triantan:} Kildare Town Co. Kildare	Date: 19/12/2024 Designed by:	Checked by:	Approved By:	
	СН	JC	JC	
Report Details:	Cundall:			
Type: Stormwater Controls Summary	2 Dawson Stre	et		
Storm Phase: Phase	Dublin			

FSR: 100 years: Increase Rainfall (%): +30: Critical Storm Per Item: Rank By: Max. Avg. Depth

Max. Total Max. Max. Max. Max. Max. Total Discharg Max. Flood Max. Percentage Residen Stormwater US DS US DS Lost Storm Event Inflow ed Outflo е Available Status Control Level Level Depth Depth t Volume Volume Volum w (L/s) Volume (%) (L/s) (m) (m) (m) (m) (m³) (m³) e (m³) (m³) FSR: 100 years: +30 %: 100.33 100.33 MC3500 1.559 OK 1.559 50.4 158.206 0.000 65.796 9.4 234.857 14.268 360 mins: 1 1 Summer

 Summary:

 For the 100yr return period; +30% climate change; 15mins. - 10080mins the top water level in the attenuation chamber has been compared to the physical chamber invert / crown levels as follows:

 MC-3500 Stormtech
 Invert Level (m)
 Crown Level (m)
 Top of Water Level (m)
 Depth of Water (m)

 MC-3500 Stormtech
 98.772
 100.820
 100.331
 1.559

Appendix H – SuDS Maintenance Checklist

	Operation and maintenance requirements for bioretention systems						
18.3	Maintenance schedule	Typical frequency					
		Inspect infiltration surfaces for silting and ponding, record de-watering time of the facility and assess standing water levels in underdrain (if appropriate) to determine if maintenance is necessary	Quarterly				
	Regular inspections	Check operation of underdrains by inspection of flows after rain	Annually				
		Assess plants for disease infection, poor growth, invasive species etc and replace as necessary	Quarterly				
		Inspect inlets and outlets for blockage	Quarterly				
	Regular maintenance	Remove litter and surface debris and weeds	Quarterly (or more frequently for tidiness or aesthetic reasons)				
		Replace any plants, to maintain planting density	As required				
		Remove sediment, litter and debris build-up from around inlets or from forebays	Quarterly to biannually				
	Occasional maintenance	Infill any holes or scour in the filter medium, improve erosion protection if required	As required				
		Repair minor accumulations of silt by raking away surface mulch, scarifying surface of medium and replacing mulch	As required				
	Remedial actions	Remove and replace filter medium and vegetation above	As required but likely to be > 20 years				

Operation and maintenance requirements for trees (after CRWA, 2009)						
Maintenance schedule	Required action	Typical frequency				
	Remove litter and debris	Monthly (or as required)				
Regular maintenance	Manage other vegetation and remove nuisance plants	Monthly (at start, then as required)				
	Inspect inlets and outlets	Inspect monthly				
	Check tree health and manage tree appropriately	Annually				
Occasional maintenance	Remove silt build-up from inlets and surface and replace mulch as necessary	Annually, or as required				
	Water	As required (in periods of drought				
Monitoring	Inspect silt accumulation rates and establish appropriate removal frequencies	Half yearly				

Maintenance schedule	Typical frequency	
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based or site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacen impermeable areas as this area is most likely to collect the most sediment
	Stabilise and mow contributing and adjacent areas	As required
Occasional maintenance	Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving	As required
Remedial Actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due t significant clogging)
	Initial inspection	Monthly for three months after installation
Monitoring	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three-monthly, 48 h after large storms in first six months
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually
	Monitor inspection chambers	Annually

21.3	Maintenance schedule	Required action	Typical frequency				
		Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, then annually				
		Remove debris from the catchment surface (where it may cause risks to performance)	Monthly				
	Regular maintenance	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter; remove and replace surface infiltration medium as necessary.	Annually				
		Remove sediment from pre-treatment structures and/ or internal forebays	Annually, or as required				
	Remedial actions	Repair/rehabilitate inlets, outlet, overflows and vents	As required				
	Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually				
		Survey inside of tank for sediment build-up and remove if necessary	Every 5 years or as required				

Appendix I – Exceedance Design Calculations

An Triantan: Kildare Town Co. Kildare Report Details: Type: Inflows Storm Phase: Phase Storm Phase: Phase	Date: 19/12/2024 Designed by: CH Cundall: 2 Dawson Street Dublin	Checked by: JC t	Approved By: JC	Type : Catchment Area
Area (ha)	0.067			
Dynamic Sizing Runoff Method Time of Concer Summer Volumetric Runoff Winter Volumetric Runoff	0.950	NOTE: Volumetric Runoff (Coefficient (Cv)	
Time of Concentration (mins) Percentage Impervious (%)	5 100 -	applied as follows to areas: · 0.95 to unit areas	o the catchment (including roofs);	
SW3.0 Footway & Landscape	Ę	proposed but rate a guidance document	ts);	Type : Catchment Area
Area (ha) Dynamic Sizing	i i	 0.5 to car parking surfacing used in pa assumed as a suffic nfiltration on site fro nvestigations) 	arking areas and cient rate given the	
Runoff MethodTime of ConcerSummer Volumetric RunoffVinter Volumetric RunoffWinter Volumetric RunoffTime of Concentration (mins)Percentage Impervious (%)	0.300 f		areas and surrounding I sufficient rate given om GI)]

SW1.0 Zone A1 Units

Area (ha)

0.033

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.950
Winter Volumetric Runoff	0.950
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.0 Zone A2 Unit

Area (ha)

0.011

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.950
Winter Volumetric Runoff	0.950
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Type : Catchment Area

An Triantan: Kildare Town	Date: 19/12/2024			
Co. Kildare	Designed by:	Checked by:	Approved By:	
	СН	JC	JC	
Report Details:	Cundall:			
Type: Inflows	2 Dawson Stre	et		
Storm Phase: Phase	Dublin			

0.022

SW1.0 Access Road

Type : Catchment Area

Type : Catchment Area

Type : Catchment Area

Area	(ha)
	()

Dynamic Sizing

Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.900
Winter Volumetric Runoff	0.900
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.1 Parking & Landscape

Area (ha)

0.009

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.500
Winter Volumetric Runoff	0.500
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW2.0 Access Road

Area	(ha)
------	------

0.018

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.900
Winter Volumetric Runoff	0.900
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Area (ha)

SW2.0 Storage Areas

0.006

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.950
Winter Volumetric Runoff	0.950
Time of Concentration (mins)	5
Percentage Impervious (%)	100

An Triantan: Kildare Town	Date: 19/12/2024		
Co. Kildare	Designed by:	Checked by:	Approved By:
	СН	JC	JC
Report Details:	Cundall:	•	
Type: Inflows	2 Dawson Stre	et	
Storm Phase: Phase	Dublin		

0.032

SW1.1 Zone B1 Units

Type : Catchment Area

Type : Catchment Area

Area (ha)

Dynamic Sizing

Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.950
Winter Volumetric Runoff	0.950
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.2 Zone B2 Unit

Area (ha)

0.019

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.950
Winter Volumetric Runoff	0.950
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.3 Zone C1 Units

Area (ha)

0.076

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.950
Winter Volumetric Runoff	0.950
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.4 Zone C2 Units

Area (ha)

0.025

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.950
Winter Volumetric Runoff	0.950
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Type : Catchment Area

An Triantan:	Date:			
Kildare Town	19/12/2024			
Co. Kildare	Designed by:	Checked by:	Approved By:	
	СН	JC	JC	
Report Details:	Cundall:			
Type: Inflows	2 Dawson Street			
Storm Phase: Phase	Dublin			

0.022

SW1.5 Zone C3 Units

Type : Catchment Area

Type : Catchment Area

Type : Catchment Area

Area (ha)

Dynamic Sizing

Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.950
Winter Volumetric Runoff	0.950
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.4 Parking

Area (ha)

0.012

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.500
Winter Volumetric Runoff	0.500
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.1 Landscape Area

ha)

0.013

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.300
Winter Volumetric Runoff	0.300
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.3 Landscape Area

Area (ha)

0.023

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.300
Winter Volumetric Runoff	0.300
Time of Concentration (mins)	5
Percentage Impervious (%)	100

An Triantan: Kildare Town	Date: 19/12/2024			
Co. Kildare	Designed by:	Checked by:	Approved By:	
	СН	JC	JC	
Report Details:	Cundall:		-	
Type: Inflows	2 Dawson Stree	et		
Storm Phase: Phase	Dublin			

SW1.4 Landscape Area

Type : Catchment Area

Area (ha)

0.003

Dynamic Sizing

Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.300
Winter Volumetric Runoff	0.300
Time of Concentration (mins)	5
Percentage Impervious (%)	100

SW1.5 Access Road

Area (ha)

0.008

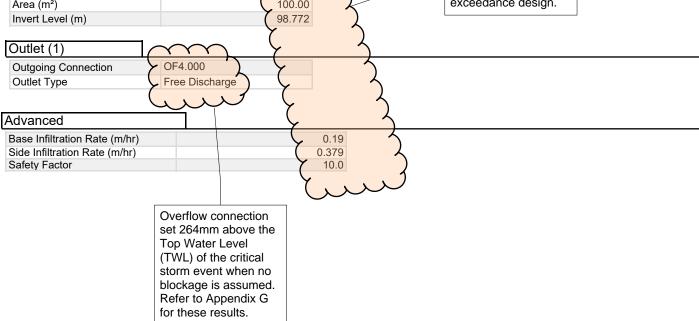
Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.900
Winter Volumetric Runoff	0.900
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Tank - Courtyard Area

0.06

Dynamic Sizing	

Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.900
Winter Volumetric Runoff	0.900
Time of Concentration (mins)	5
Percentage Impervious (%)	100


Type : Catchment Area

An Triantan: Kildare Town			Date: 19/12/2024					
Co. Kildare			Designed by:	Checked by:	Approv	ed By:		
			СН	JC	JC	,		
Report Details:			Cundall:	1				
Type: Junctions			2 Dawson Stree	et				
Storm Phase: Phase			Dublin					
Name	Junction Type	Easting (m)	Northing (m)	Cover Level (m)	Depth (m)	Invert Level (m)	Chamber Shape	Diameter (m)
SW2.0	Manhole	672966.750	712577.945	101.660	2.168	99.492	Circular	1.200
SW1.5	Manhole	672979.317	712573.247	101.695	2.420	99.275	Circular	1.200
SW1.1	Manhole	672952.899	712583.334	101.585	1.371	100.214	Circular	1.200
SW1.0	Manhole	672936.565	712588.998	101.510	1.210	100.300	Circular	1.200
SW1.6	Manhole	672984.361	712586.505	101.690	2.462	99.228	Circular	1.200
SW3.0	Manhole	672985.769	712604.925	101.790	2.030	99.760	Circular	1.200
SW3.1	Manhole	673003.370	712598.465	101.790	2.340	99.450	Circular	1.200
SW1.2	Manhole	672960.564	712561.109	101.380	1.284	100.096	Circular	1.200
SW1.3	Manhole	672963.298	712557.548	101.365	1.666	99.699	Circular	1.200
SW1.4	Manhole	672975.697	712566.005	101.500	2.110	99.390	Circular	1.200
SW4.0	Manhole	673001.565	712585.907	101.760	1.859	99.901	Circular	1.200
SW4.1	Manhole	673005.601	712584.567	101.885	2.085	99.800	Circular	1.200
Name	Lock	1						
SW2.0	None							
SW1.5	None	1						
SW1.1	None							
SW1.0	None							
SW1.6	None							
SW3.0	None	1						
SW3.1	None							
SW1.2	None							
SW1.3	None							
SW1.4	None	1						
SW4.0	None	1						
CIN/A A		7						

SW4.1

None

An Triantan:	Date				
Kildare Town		12/2024 igned by:	Checked by:	Approved By:	
Co. Kildare			-		
Report Details:	CH	dall:	JC	JC	
Type: Stormwater Controls	-	awson Stree	_t		
Storm Phase: Phase		blin			
МС3500					Type : Chamber
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Dimensions					
Exceedance Level (m)		100.830			
Depth (m)		2.048			
Base Level (m)		98.772			
Number of Chambers		29			
Number of Rows		8			
Distance Between Rows (mm)		150			
Total Volume (m ³)		184.534			
, , ,		104.004			
Chamber Shape					
Туре	Parabolic Arch Cham	ber			
Chamber Length (m)	2.1	184			
Wall Thickness (mm)		50			
Diameter / Base Width (mm)	19	956			
Height (mm)	11	143			
Embedded Parameters					
Porosity (%)		40			
Height Above (m)		0.405			
Height Below (m)		0.450			
Sides (m)		0.300			
Ends (m)		0.150			
Outlets					
	I				
Outlet					
Outgoing Connection	(None)				
Outlet Type	Filtration	\mathbf{r}			
Permeability Coefficient (m/hr)	0.3	79)		Infiltration rates	
Safety Factor	Y 10.0			reduced by 50% as	
Bed Depth (m)	0.4			part of the	
Area (m²)	(100.			exceedance design.	
)	5	
Invert Level (m)	98.7		2		

An Triantan: Date: Kildare Town 19/12/2024										
Co. Kildare				esigned by:	Checked by:	Approved By:				
				Н	JC	JC	/			
Report Details: Type: Inflow Su Storm Phase: P			2	Cundall: 2 Dawson Street Dublin						
Inflow Label	Connected To	Flow (L/s)	Runoff Meth	hod Area (ha)	Percentage Impervious (%)	Urban Creep (%)	Adjusted Percentage Impervious (%)	Area Analysed (ha)		
SW1.0 Access Road	SW1.0		Time of Concentration	on 0.0	22 100	10	110	0.024		
SW1.0 Zone A1 Units	SW1.0		Time of Concentration	on 0.0	33 100	10	110	0.036		
SW1.0 Zone A2 Unit	SW1.0		Time of Concentration	on 0.0	11 100	10	110	0.013		
SW1.1 Landscape Area	SW1.1		Time of Concentration	on 0.0	13 100	10	110	0.014		
SW1.1 Parking & Landscape	SW1.1		Time of Concentration	on 0.0	09 100	10	110	0.010		
SW1.1 Zone B1 Units	SW1.1		Time of Concentration	on 0.0	32 100	10	110	0.035		
SW1.2 Zone B2 Unit	SW1.2		Time of Concentration	on 0.0	19 100	10	110	0.021		
SW1.3 Landscape Area	SW1.3		Time of Concentration	on 0.0	23 100	10	110	0.026		
SW1.3 Zone C1 Units	SW1.3		Time of Concentration	on 0.0	76 100	10	110	0.083		
SW1.4 Landscape Area	SW1.4		Time of Concentratio	on 0.0	03 100	10	110	0.003		
SW1.4 Parking	SW1.4		Time of Concentration	on 0.0	12 100	10	110	0.013		
SW1.4 Zone C2 Units	SW1.4		Time of Concentration	o.0	25 100	10	110	0.028		
SW1.5 Access Road	SW1.5		Time of Concentration	on 0.0	08 100	10	110	0.009		
SW1.5 Zone C3 Units	SW1.5		Time of Concentration	on 0.0	22 100	10	110	0.024		
SW2.0 Access Road	SW2.0		Time of Concentration	on 0.0	18 100	10	110	0.020		
SW2.0 Storage Areas	SW2.0		Time of Concentration	on 0.0	06 100	10	110	0.006		
SW3.0 Footway & Landscape	SW3.0		Time of Concentratio	on 0.0	37 100	10	110	0.041		
SW3.0 Zone D Units	SW3.0		Time of Concentration	on 0.0	67 100	10	110	0.074		
Tank - Courtyard Area	MC3500		Time of Concentration	on 0.0	60 100	10	110	0.066		
TOTAL		0.0		0.4	96			0.546		

Total Contributing Catchment Area including 10% urban creep factor in accordance with KCC guidance documents

An Triantan: Kildare Town		Date: 19/12/2024			
Co. Kildare		Designed by:	Checked by:	Approved By:	
		CH	JC	JC	
Report Details:		Cundall:	10	30	
Гуре: Network Design Criteria		2 Dawson Street			
Storm Phase: Phase		Dublin			
Flow Options		•			
Peak Flow Calculation	(UK) Modified Rat	tional Method			
	(
Win. Time of Entry (mins)		5			
Min. Time of Entry (mins) Max. Travel Time (mins) Pine Ontions		5 30			
Max. Travel Time (mins) Pipe Options					
Max. Travel Time (mins) Pipe Options Lock Slope Options	None Minimise Excavati	30			
Max. Travel Time (mins) Pipe Options Lock Slope Options Design Options	Minimise Excavation	30			
Max. Travel Time (mins) Pipe Options Lock Slope Options Design Options Design Level		30 Dn			
Max. Travel Time (mins) Pipe Options Lock Slope Options Design Options Design Level Min. Cover Depth (m)	Minimise Excavation	30 on 1.200			
Max. Travel Time (mins) Pipe Options Lock Slope Options Design Options Design Level Min. Cover Depth (m) Min. Slope (1:X)	Minimise Excavation	30 Dn			
Max. Travel Time (mins) Pipe Options Lock Slope Options Design Options Design Level Min. Cover Depth (m) Min. Slope (1:X) Max. Slope (1:X)	Minimise Excavation	00 1.200 500.00			
Max. Travel Time (mins) Pipe Options Lock Slope Options Design Options Design Level Min. Cover Depth (m) Min. Slope (1:X)	Minimise Excavation	000 1.200 500.00 40.00			
Max. Travel Time (mins) Pipe Options Lock Slope Options Design Options Design Level Min. Cover Depth (m) Min. Slope (1:X) Max. Slope (1:X) Min. Velocity (m/s)	Minimise Excavation	0n 1.200 500.00 40.00 1.0			

Apply Offset

An Triantan:	Date:					
Kildare Town	19/12/2024					
Co. Kildare	Designed by:	Checked by:	Approved By:			
Report Details:	CH	JC	JC			
Type: Rainfall Analysis Criteria		Cundall: 2 Dawson Street Dublin				
Runoff Type	Dynamic					
Output Interval (mins)	5					
Time Step	Shortest					
Urban Creep	Apply Global Value					
Urban Creep Global Value (%)	10					
Junction Flood Risk Margin (mm)	300					
Perform No Discharge						
Perform No Discharge Analysis Rainfall						
FSR				Type: FSR		
Region	Scotland And Ireland					
M5-60 (mm)	14.9					
Ratio R	0.281					
Summer	✓					
Winter	V					

Return Period

Return Period (years)	Increase Rainfall (%)	}	30% applied for climate	
1.0 30.0	30.000	')	change in accordance with KCC guidance documents	
100.0	30.000		Nee guidance documents	
Storm Durations				

Duration (mins)	Run Time (mins)
15	· · ·
· · · · · · · · · · · · · · · · · · ·	30
30	60
60	120
120	240
180	360
240	480
360	720
480	960
600	1200
720	1440
960	1920
1440	2880
2160	4320
2880	5760
4320	8640
5760	11520
7200	14400
8640	17280
10080	20160

An Triantan: Kildare Town	Date: 19/12/2024	19/12/2024				
Co. Kildare	Designed by:	Checked by:	Approved By:			
	СН	JC	JC			
Report Details:	Cundall:					
Type: Junctions Summary	2 Dawson Stre	et				
Storm Phase: Phase	Dublin					

FSR: 1 years: Increase Rainfall (%): +30: Critical Storm Per Item: Rank By: Max. Depth

Junction	Storm Event	Cover Level (m)	Invert Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
SW2.0	FSR: 1 years: +30 %: 15 mins: Summer	101.66 0	99.492	99.543	0.051	4.1	0.058	0.000	3.8	1.770	ок
SW1.5	FSR: 1 years: +30 %: 600 mins: Summer	101.69 5	99.275	99.523	0.248	10.4	0.281	0.000	10.4	95.990	ок
SW1.1	FSR: 1 years: +30 %: 15 mins: Summer	101.58 5	100.21 4	100.328	0.114	18.3	0.129	0.000	17.1	8.127	ОК
SW1.0	FSR: 1 years: +30 %: 15 mins: Summer	101.51 0	100.30 0	100.388	0.088	11.5	0.100	0.000	11.1	4.991	ОК
SW1.6	FSR: 1 years: +30 %: 600 mins: Summer	101.69 0	99.228	99.523	0.295	10.4	0.334	0.000	10.1	95.959	ОК
SW3.0	FSR: 1 years: +30 %: 15 mins: Summer	101.79 0	99.760	99.833	0.073	14.0	0.082	0.000	13.7	6.085	ок
SW3.1	FSR: 1 years: +30 %: 600 mins: Summer	101.79 0	99.450	99.523	0.073	2.8	0.083	0.000	2.8	25.927	ОК
SW1.2	FSR: 1 years: +30 %: 15 mins: Summer	101.38 0	100.09 6	100.227	0.131	20.5	0.148	0.000	19.3	9.551	ОК
SW1.3	FSR: 1 years: +30 %: 15 mins: Summer	101.36 5	99.699	99.846	0.147	34.1	0.166	0.000	32.6	15.940	ОК
SW1.4	FSR: 1 years: +30 %: 15 mins: Summer	101.50 0	99.390	99.553	0.163	38.4	0.184	0.000	37.3	18.433	ок
SW4.0	FSR: 1 years: +30 %: 15 mins: Summer	101.76 0	99.901	99.901	0.000	0.0	0.000	0.000	0.0	0.000	ОК
SW4.1	FSR: 1 years: +30 %: 15 mins: Summer	101.88 5	99.800	99.800	0.000	0.0	0.000	0.000	0.0	0.000	ОК

Summary:

For the 1yr return period; +30% climate change; 15mins. - 10080mins there is no surcharging or surface flooding on the site. No flows exit the site with everything retained within the MC-3500 Stormtech Chambers.

The top water level in the attenuation chamber has been compared to the physical chamber invert / crown levels as follows:

	Invert Level (m)	Crown Level (m)	Top of Water Level (m)	
MC-3500 Stormtech	98.772	100.820	99.523	

An Triantan: Kildare Town	Date: 19/12/2024			
Co. Kildare	Designed by:	Checked by:	Approved By:	
	СН	JC	JC	
Report Details:	Cundall:			
Type: Junctions Summary	2 Dawson Stre	et		
Storm Phase: Phase	Dublin			

FSR: 30 years: Increase Rainfall (%): +30: Critical Storm Per Item: Rank By: Max. Depth

Junction	Storm Event	Cover Level (m)	Invert Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
SW2.0	FSR: 30 years: +30 %: 600 mins: Summer	101.66 0	99.492	100.275	0.783	1.6	0.886	0.000	1.4	14.977	Surcharged
SW1.5	FSR: 30 years: +30 %: 600 mins: Summer	101.69 5	99.275	100.275	1.000	20.0	1.131	0.000	19.7	191.056	Surcharged
SW1.1	FSR: 30 years: +30 %: 15 mins: Summer	101.58 5	100.21 4	100.439	0.226	39.1	0.255	0.000	35.5	18.010	Surcharged
SW1.0	FSR: 30 years: +30 %: 15 mins: Summer	101.51 0	100.30 0	100.466	0.166	25.5	0.188	0.000	23.1	11.065	ОК
SW1.6	FSR: 30 years: +30 %: 600 mins: Summer	101.69 0	99.228	100.275	1.047	19.7	1.184	0.000	19.4	191.027	Surcharged
SW3.0	FSR: 30 years: +30 %: 600 mins: Summer	101.79 0	99.760	100.275	0.515	5.6	0.583	0.000	5.6	51.546	Surcharged
SW3.1	FSR: 30 years: +30 %: 600 mins: Summer	101.79 0	99.450	100.275	0.825	5.6	0.933	0.000	5.2	51.531	Surcharged
SW1.2	FSR: 30 years: +30 %: 15 mins: Summer	101.38 0	100.09 6	100.317	0.221	42.9	0.250	0.000	42.2	21.179	ок
SW1.3	FSR: 30 years: +30 %: 600 mins: Summer	101.36 5	99.699	100.275	0.576	14.7	0.652	0.000	14.8	135.201	Surcharged
SW1.4	FSR: 30 years: +30 %: 600 mins: Summer	101.50 0	99.390	100.275	0.885	17.1	1.001	0.000	16.6	156.477	Surcharged
SW4.0	FSR: 30 years: +30 %: 15 mins: Summer	101.76 0	99.901	99.901	0.000	0.0	0.000	0.000	0.0	0.000	ОК
SW4.1	FSR: 30 years: +30 %: 15 mins: Summer	101.88 5	99.800	99.800	0.000	0.0	0.000	0.000	0.0	0.000	ОК

Summary:

For the 30yr return period; +30% climate change; 15mins. - 10080mins there is some surcharging of the network but there is no surface flooding on the site. No flows exit the site for this event with 0L/sec noted in SW4.0 and SW4.1.

The top water level in the attenuation chamber has been compared to the physical chamber invert / crown levels as follows:

MC-3500 Stormtech 98.772	Crown Level (m) 100.820	Top of Water Level (m) 100.275	
--------------------------	----------------------------	-----------------------------------	--

An Triantan: Kildare Town	Date: 19/12/2024			
Co. Kildare	Designed by:	Checked by:	Approved By:	
	СН	JC	JC	
Report Details:	Cundall:			
Type: Junctions Summary	2 Dawson Stre	et		
Storm Phase: Phase	Dublin			

FSR: 100 years: Increase Rainfall (%): +30: Critical Storm Per Item: Rank By: Max. Depth

Junction	Storm Event	Cover Level (m)	Invert Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
SW2.0	FSR: 100 years: +30 %: 600 mins: Summer	101.66 0	99.492	100.796	1.304	2.1	1.475	0.000	1.7	18.938	Surcharged
SW1.5	FSR: 100 years: +30 %: 600 mins: Summer	101.69 5	99.275	100.796	1.521	25.1	1.721	0.000	24.8	241.110	Surcharged
SW1.1	FSR: 100 years: +30 %: 600 mins: Summer	101.58 5	100.21 4	100.798	0.584	9.5	0.661	0.000	9.5	86.945	Surcharged
SW1.0	FSR: 100 years: +30 %: 600 mins: Summer	101.51 0	100.30 0	100.798	0.498	5.8	0.564	0.000	5.8	53.371	Surcharged
SW1.6	FSR: 100 years: +30 %: 600 mins: Summer	101.69 0	99.228	100.796	1.568	24.8	1.774	0.000	24.5	241.082	Surcharged
SW3.0	FSR: 100 years: +30 %: 600 mins: Summer	101.79 0	99.760	100.797	1.037	7.1	1.172	0.000	6.7	65.057	Surcharged
SW3.1	FSR: 100 years: +30 %: 600 mins: Summer	101.79 0	99.450	100.796	1.346	6.7	1.523	0.000	6.4	65.044	Surcharged
SW1.2	FSR: 100 years: +30 %: 600 mins: Summer	101.38 0	100.09 6	100.797	0.701	11.1	0.793	0.000	11.1	102.264	Surcharged
SW1.3	FSR: 100 years: +30 %: 600 mins: Summer	101.36 5	99.699	100.797	1.098	18.6	1.242	0.000	18.2	170.640	Surcharged
SW1.4	FSR: 100 years: +30 %: 600 mins: Summer	101.50 0	99.390	100.797	1.407	21.1	1.591	0.000	20.7	197.439	Surcharged
SW4.0	FSR: 100 years: +30 %: 600 mins: Summer	101.76 0	99.901	100.796	0.895	4.7	1.012	0.000	2.2	17.966	Surcharged
SW4.1	FSR: 100 years: +30 %: 720 mins: Summer	101.88 5	99.800	99.825	0.025	2.2	0.000	0.000	2.2	17.723	ОК

Summary:

For the 100yr return period; +30% climate change; 15mins. - 10080mins the entire network is surcharged but no manholes are under flood risk. There is also no surface water flooding evident with the TWL of each manhole around 800mm-900mm below their respected cover levels. As can be seen for this event flows exit the site at a controlled rate through the overflow connection.

The top water level in the attenuation chamber has been compared to the physical chamber invert / crown levels as follows:

	Invert Level (m)	Crown Level (m)	Top of Water Level (m)	
MC-3500 Stormtech	98.772	100.820	100.796	

An Triantan: Kildare Town Co. Kildare	Date: 19/12/2024 Designed by:	Checked by:	Approved By:	
	СН	JC	JC	
Report Details:	Cundall:			
Type: Stormwater Controls Summary	2 Dawson Stre	et		
Storm Phase: Phase	Dublin			

FSR: 1 years: Increase Rainfall (%): +30: Critical Storm Per Item: Rank By: Max. Avg. Depth

Stormwater Control	Storm Event	Max. US Level (m)	Max. DS Level (m)	Max. US Depth (m)	Max. DS Depth (m)	Max. Inflow (L/s)	Max. Residen t Volume (m³)	Max. Flood ed Volum e (m ³)	Total Lost Volume (m³)	Max. Outflo w (L/s)	Total Discharg e Volume (m ³)	Percentage Available (%)	Status
MC3500	FSR: 1 years: +30 %: 600 mins: Summer	99.523	99.523	0.751	0.751	15.0	68.720	0.000	34.015	2.8	106.403	62.760	ок

Summary:

For the 1yr return period; +30% climate change; 15mins. - 10080mins the top water level in the attenuation chamber has been compared to the physical chamber invert / crown levels as follows:

	Invert Level (m)	Crown Level (m)	Top of Water Level (m)	Depth of Water (m)
MC-3500 Stormtech	98.772	100.820	99.523	0.751

An Triantan: Kildare Town	Date: 19/12/2024			
Co. Kildare	Designed by:	Checked by:	Approved By:	
	СН	JC	JC	
Report Details:	Cundall:		•	
Type: Stormwater Controls Summary	2 Dawson Stre	et		
Storm Phase: Phase	Dublin			

FSR: 30 years: Increase Rainfall (%): +30: Critical Storm Per Item: Rank By: Max. Avg. Depth

Max. Total Max. Max. Max. Max. Max. Total Max. Flood Max. Discharg Percentage Stormwater US DS US DS Residen Lost Storm Event Inflow ed Outflo Available Status е Control Level Level Depth Depth t Volume Volume Volum Volume w (L/s) (%) (L/s) (m) (m) (m) (m) (m³) (m³) e (m³) (m³) FSR: 30 years: 100.27 100.27 MC3500 +30 %: 600 1.503 1.503 28.5 153.967 0.000 57.254 206.524 16.565 OK 4.6 5 5 mins: Summer

Summary:

For the 30yr return period; +30% climate change; 15mins. - 10080mins the top water level in the attenuation chamber has been compared to the physical chamber invert / crown levels as follows:

MC-3500 Stormtech	Invert Level (m)	Crown Level (m)	Top of Water Level (m)	Depth of Water (m)
	98.772	100.820	100.275	1.503

An Triantan: Kildare Town	Date: 19/12/2024		
Co. Kildare	Designed by:	Checked by:	Approved By:
	СН	JC	JC
Report Details:	Cundall:		•
Type: Stormwater Controls Summary	2 Dawson Stre	et	
Storm Phase: Phase	Dublin		

FSR: 100 years: Increase Rainfall (%): +30: Critical Storm Per Item: Rank By: Max. Avg. Depth

Max. Total Max. Max. Max. Max. Max. Total Max. Flood Max. Discharg Percentage Stormwater US DS US DS Residen Lost Storm Event Inflow ed Outflo Available Status е Control Level Level Depth Depth t Volume Volume Volum w (L/s) Volume (%) (L/s) (m) (m) (m) (m) (m³) (m³) e (m³) (m³) FSR: 100 100.79 years: +30 %: 100.79 MC3500 2.024 2.024 35.9 187.715 0.000 65.575 10.3 259.066 -1.724 OK 600 mins: 6 6 Summer

Summary:

For the 100yr return period; +30% climate change; 15mins. - 10080mins the top water level in the attenuation chamber has been compared to the physical chamber invert / crown levels as follows:

MC-3500 Stormtech	Invert Level (m)	Crown Level (m)	Top of Water Level (m)	Depth of Water (m)
	98.772	100.820	100.796	2.024

Appendix J – Uisce Éireann Confirmation of Feasibility (CoF)

CONFIRMATION OF FEASIBILITY

Cian Hill

CUNDALL 2 Dawson Street Dublin D02VK75

1 December 2023

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Uisce Éireann PO Box 448 South City Delivery Office Cork City

www.water.ie

Our Ref: CDS23008235 Pre-Connection Enquiry Residential Development, Station Road, Kildare Town, Kildare

Dear Applicant/Agent,

We have completed the review of the Pre-Connection Enquiry.

Uisce Éireann has reviewed the pre-connection enquiry in relation to a Water & Wastewater connection for a Housing Development of 30 unit(s) at Residential Development, Station Road, Kildare Town, Kildare, (the **Development**).

Based upon the details provided we can advise the following regarding connecting to the networks;

- Water Connection
 Feasible without infrastructure upgrade by
 Irish Water
- Wastewater Connection Feasible Subject to upgrades
- In order to accommodate the proposed connection, approx. 90m of the existing 150mm gravity sewer on Station Road has to be upgraded to 225mm pipe. The Developer will be required to fund the upgrade works. The fee will be calculated at a connection application stage.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Uisce Éireann infrastructure. Before the Development can be connected to our network(s) you must submit a connection application <u>and be granted and sign</u> a connection agreement with Uisce Éireann.

Stiúrthóirí / Directors: Tony Keohane (Cathaoirleach / Chairman), Niall Gleeson (POF / CEO), Christopher Banks, Fred Barry, Gerard Britchfield, Liz Joyce, Patricia King, Eileen Maher, Cathy Mannion, Michael Walsh.

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin, Ireland D01NP86

Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Uisce Éireann is a design activity company, limited by shares. Cláraithe in Éirinn Uimh.: 530363 / Registered in Ireland No.: 530363.

As the network capacity changes constantly, this review is only valid at the time of its completion. As soon as planning permission has been granted for the Development, a completed connection application should be submitted. The connection application is available at www.water.ie/connections/get-connected/

Where can you find more information?

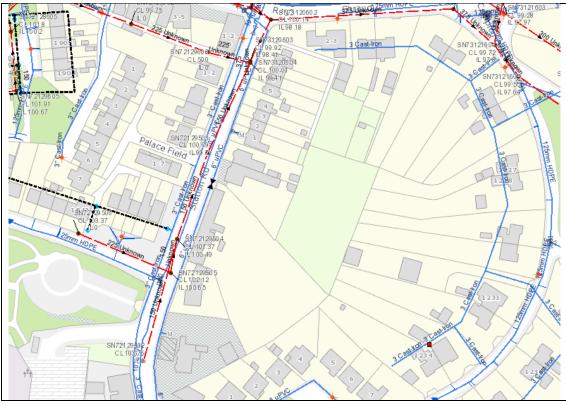
- Section A What is important to know?
- Section B Details of Uisce Éireann's Network(s)

This letter is issued to provide information about the current feasibility of the proposed connection(s) to Uisce Éireann's network(s). This is not a connection offer and capacity in Uisce Éireann's network(s) may only be secured by entering into a connection agreement with Uisce Éireann.

For any further information, visit <u>www.water.ie/connections</u>, email <u>newconnections@water.ie</u> or contact 1800 278 278.

Yours sincerely,

Dermot Phelan Connections Delivery Manager


Section A - What is important to know?

What is important to know?	Why is this important?
Do you need a contract to connect?	 Yes, a contract is required to connect. This letter does not constitute a contract or an offer in whole or in part to provide a connection to Uisce Éireann's network(s).
	 Before the Development can connect to Uisce Éireann's network(s), you must submit a connection application <u>and</u> <u>be granted and sign</u> a connection agreement with Uisce Éireann.
When should I submit a Connection Application?	 A connection application should only be submitted after planning permission has been granted.
Where can I find information on connection charges?	Uisce Éireann connection charges can be found at: <u>https://www.water.ie/connections/information/charges/</u>
Who will carry out the connection work?	 All works to Uisce Éireann's network(s), including works in the public space, must be carried out by Uisce Éireann*.
	*Where a Developer has been granted specific permission and has been issued a connection offer for Self-Lay in the Public Road/Area, they may complete the relevant connection works
Fire flow Requirements	• The Confirmation of Feasibility does not extend to fire flow requirements for the Development. Fire flow requirements are a matter for the Developer to determine.
	What to do? - Contact the relevant Local Fire Authority
Plan for disposal of storm water	The Confirmation of Feasibility does not extend to the management or disposal of storm water or ground waters.
	 What to do? - Contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges.
Where do I find details of Uisce Éireann's network(s)?	 Requests for maps showing Uisce Éireann's network(s) can be submitted to: <u>datarequests@water.ie</u>

What are the design requirements for the connection(s)?	The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this Development shall comply with <i>the Uisce Éireann</i> <i>Connections and Developer Services Standard Deta</i> <i>and Codes of Practice,</i> available at <u>www.water.ie/connections</u>	
Trade Effluent Licensing	Any person discharging trade effluent** to a sewer, mus have a Trade Effluent Licence issued pursuant to sectio 16 of the Local Government (Water Pollution) Act, 1977 amended).	n
	More information and an application form for a Trade Effluent License can be found at the following link: <u>https://www.water.ie/business/trade-effluent/about/</u> **trade effluent is defined in the Local Government (Wate	er
	Pollution) Act, 1977 (as amended)	

Section B – Details of Uisce Éireann's Network(s)

The map included below outlines the current Uisce Éireann infrastructure adjacent the Development: To access Uisce Éireann Maps email datarequests@water.ie

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Note: The information provided on the included maps as to the position of Uisce Éireann's underground network(s) is provided as a general guide only. The information is based on the best available information provided by each Local Authority in Ireland to Uisce Éireann.

Whilst every care has been taken in respect of the information on Uisce Éireann's network(s), Uisce Éireann assumes no responsibility for and gives no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided, nor does it accept any liability whatsoever arising from or out of any errors or omissions. This information should not be solely relied upon in the event of excavations or any other works being carried out in the vicinity of Uisce Éireann's underground network(s). The onus is on the parties carrying out excavations or any other works to ensure the exact location of Uisce Éireann's underground network(s) is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

